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This paper discusses the statistical properties of jump-diffusion processes and 
reports on parameter estimates for the DAX stock index and 48 German stocks wit~ 
traded options. It is found that a Poisson-type jump-diffusion process can explain 
the high levels of kurtosis and skewness of observed return distributions of German 
stocks. Furthermore, we demonstrate that the return dynamics of the DAX include 
a statistically significant jump component except for a few sample subperiods. This 
finding is seen to be inconsistent with asset pricing models assuming that the jump 
component of the stock's return is unsystematic and diversifiable in the market 
portfolio. 

1 I n t r o d u c t i o n  

Continuous time stochastic processes with discontinuous sample path are popular proces- 
ses to model securities prices for option valuation. These processes constitute an impor- 
tant alternative to the standard diffusion model of Black and Scholes (1973) and were 
first studied by Press (1967) and incorporated by Merton (1976a, 1976b) into the theory 
of option valuation. More recent applications of such processes in the option valuation 
context include the papers of Jones (1984), Naik and Lee (1990), Ahn (1991), Amin (1991) 
and Jarrow and Madan (1991). The popularity of these jump-diffusion type continuous 
time stochastic processes stems from at least two facts. First, as distinguished from pure 
diffusion processes, these processes can explain the observed empirical characteristics of 
stock return distributions, such as high levels of kurtosis and skewness. Second, they are 
economically appealing because they allow that stock prices change by significant amounts 
in a very short time ('jumps') - a reasonable assumption for an efficient stock market - 
while the probability of such jumps is zero in diffusion processes. 

Statistical investigations of such mixtures of a diffusion process and a compound jump 
process for American stock prices may be found in Ball and Torous (1983, 1985), Jarrow 
and Rosenfeld (1984) and Akgiray and Booth (1986). Akgiray, Booth and Loistl (1989) 
provide some evidence for the general form of the mixed process by examining the week- 
ly returns of a portfolio consisting of 48 stocks actively traded on the Frankfurt Stock 

*This work was partially supported by the Deutsche Forschungsgemeinschaft, Schwerpunktprogranun 
'Empirische Kapit almarktforsehung'. 
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Exchange. However, a complete statistical investigation of such processes for German 
stock prices has not yet appeared. 

This paper extends the work of Akgiray, Booth and Loistl (1989) in at least two ways. 
First, the general jump-diffusion process is tested on 48 individual stocks as well as on 
the DAX stock index. Second, we examine daily as well as weekly returns over a reason- 
ably long sample period. Furthermore, the paper reports on the ability of a simplified 
jump-diffusion process to describe empirical return distributions. The paper is organized 
as follows. The next section contains a rigorous description of the Poisson-type process 
and the resulting terminal density function to be estimated. Section 3 describes the me- 
thodology of parameter estimation and Section 4 presents the empirical findings. Section 
5 concludes with some implications for valuing stock options and stock index options. 

2 Description of Jump-Diffusion Processes 

Jump-diffusion processes are popular processes to model stock prices since they have an 
intuitive interpretation. The jump component is an attempt to incorporate the arrival 
of very important (abnormal) new information while the diffusion component models 
the arrival of less important (normal) new information. A rather general jump-diffusion 
process with independent increments is a Brownian motion superimposed by a compound 
jump process of the Poisson type. The Poisson process is assumed to be homogeneous 
(with respect to time and state) and independent of the Brownian motion. Letting St 
denote stock price at time t and St- the stock price an instant before time t, the dynamics 
of the stock price process S - {St; t > 0} can be represented by the following stochastic 
differential equation 

dSt 
= adt + adBt + I t dN t ,  (1) 

St_ 
where 

i) B --= {Bt; t _> O) is a standard Brownian motion, a is the drift parameter, and a > 0 
is the diffusion parameter, 

ii) N - {Nt;t >_ O} is a Poisson counting process with parameter A ~ O, i.e. the jump 
intensity per unit time, 

iii) I = {It; t _> O} is a process with left-continuous sample paths describing the stocha- 
stic size of the jump occuring next: It = ~.'~=t L,~I(T,_I,T,](t) where L = (L1, L~, . .) 
is an i.i.d, sequence of random variables with L,  > -1  representing the percentage 
change of S due to a jump (jump size) occuring at time T~: L,, = (ST~ -- STn-) /STn- ,  
To = 0 and {T1,T~,. . .}  = {t > O[Nt - Nt -  = 1} is the set of arrival times of the 
jumps. The expression ItdNt symbolizes a compounded Poisson process, 

iv) B, N, I are independent, 

v) B, N and I are adapted to the filtration {~'t; t > 0}, i.e. Nt, Bt and It are 9vt - 
measurable random variables. The filtration will be assumed to satisfy the usual 
conditions 1. 

1See, e.g., Karatzas and Shreve (1988, p.10) 
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An equivalent representation of relationship (1) reads as follows: 

dS, = aSt_dt + aSt_dBt + S t -hdN,  �9 (2) 

Accordingly, the stock price change dSt = St+dr- St- is the sum of three components. The 
component aSt_dt represents the instantaneous expected stock price change conditional 
on no arrivals of abnormal information. The aSt_dBt part describes the unanticipated 
part of the instantaneous stock price change due to the arrival of normal information, and 
the S~_I~dN~ part describes the total instantaneous stock price change due to the arrival 
of abnormal information. Application of a fairly general version of It6's lemma (see, e.g., 
Rogers and Williams (1987, p.394)) to ln(St) delivers 

Nt 
ln(S,) = ln(S0) -I- (c~ - ~2/2)t + ~Bt + ~ h~(1 + L.).  (3) 

Defining Xt =- ln(S~/So) to be the rate of return over the interval [0, t], # = a - a~]2, 
and J ,  - ln(1 + L,),  we obtain 

N, 
X, = gt + aB, + ~ Ji (t > 0).  (4) 

i----I 

In the special case when the {Ji} are normally distributed with parameters ga and a~, 
the rate of return over the unit interval [0,1], X1, is then distributed as 

F(x)  = P(X~ < x) = EP[X, <_ zlN,] 

= EP(~ + ~B, + J, + . . .  J. < =)LfN, = EV(=I, + N ~ J , ~  ~ + N,o]) 

.=o--~ .~  r + n~J,~ ~ + ~ ) .  (5) 

where r denotes the cumulated normal density function. The corresponding density 
function is easily obtained as 

oo e-~ ~n 
f (x )  = n~__0~ ~(~1~ + a~J,~ + ~ )  (6) 

where ~(.) denotes the normal density function. In a similar manner we can get the 
unconditional expected rate of return per unit time and the unconditional variance of the 
rate of return per unit time, respectively: 

E(X~) = EE[X~IN,] 

= EE(g + aB~ + J~ + . . .  + J.)l=n, 
= E(~ + lv,~j) 
= ~ -~- , ~ j ,  (7) 

Var(Xx) = EVar[X, IN,] + VarE[X, IN~] 
= E(a 2 + a~N1) + Var(# +/~jN,)  
= a 2 + a~,~ + ~,~ 
= ~2 + ~(o~ + , ~ ) .  (8) 
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Ball and Torous (1983) suggest a Bernoulli-type jump-diffusion process as an appropriate 
model for information arrivals and as such, stock price jumps. The distinguishing feature 
of this simpler process is that over a fixed period of time (i.e. unit time) either no impor- 
tant new information arrives, or at most one abnormal information arrival occurs. The 
corresponding stock return density reads 

b(x) = ( 1  - x)~(~ll,, : )  + ~(~1~, + g J,,: +,,3) (9) 

where ~(.) denotes the normal density function. For small values of ~, the jump intensity 
per unit time, however, b(z) approximates the more general density f(z) very well ( I f (x ) -  
b(z)l = o(~)). Therefore, we may view b(z), up to order )~, as a truncation, after two 
terms, of f(x).  Compared to the normal density function, the shape of f(x) and b(z) is 
always more peaked in the center and has thicker tails as long as ~ > 0. Both density 
functions are symmetric around/~ if/~s = 0 and skewed otherwise 2. Therefore a jump~ 
diffusion process with ~ > 0 might explain the observed leptokurtosis and skewness of 
stock return distributions. 

3 S t a t i s t i c a l  M e t h o d o l o g y  

In accordance with most of the preceeding studies, we calculate the maximum likelihood 
estimates (MLEs) of the process parameters. Given a sample of (daily or weekly) stock 
returns x = (x l ,x2 , . . . ,  zm), the logarithm of the corresponding likelihood function is 
defined as 

~n 

In L(x[0) = ~ In f(z,10 ) (10) 
i = 1  

where 0 - (/~,a2,A,/~j,a~), and f(.10) is the density function given in (6) resulting from 
a Poisson-type jump-diffusion process. Relying on the experimental evidence reported in 
Ball and Torous (1985, p. 160), we truncate the infinite sum in f(xl]0) at N = 10 and 
maximize the truncated log-likelihood function 

m N e-;~n 

In LN(xl0) = ,=1 ~ I n  ( ~  T ~(z,1. + nm, u 2 + nu~)) (ii) 

with N = 10, instead of (10). Necessary conditions for a maximum likelihood estimator 
0* become 

0in LN(x]0 ~ 
00~ = 0,  i = 1 , . . . , 5 ,  (12) 

sufficient conditions require the positive definiteness of -H(x]0"),  the 5:(5 Hessian matrix 
H(x]0) being defined by 

021nLN(xIO) 
H(xlO)~J = OOi OOj , i,j = 1 , . . . , 5 .  (13) 

~Akgiray and Booth (198(;, p. 169) show graphs of various density functions f(.) and a standard 
normal density function to(') for comparison. 
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The MLEs of the process parameters are calculated by solving the nonlinear equation 
system (12) numerically. The employed quasi-Newton procedure 3 is known to converge 
quickly, provided the initial values of the algorithm are close to the final solution. Confir- 
ming Ball and Torous (1985), we found that the Bernoulli jump-diffusion MLEs provide 
excellent starting values for the quasi-Newton algorithm. Therefore we computed first 
of all the MLEs for the simpler process by constraining the mean logarithmic jump size 
equal to zero, P3 = 0, and by taking arbitrary starting values for the other parameters to 
be estimated. 

Since a diffusion-only model is nested within a combined diffusion and jump model, a 
likelihood ratio test can be used to test the null-hypothesis H0: stock and stock index 
returns are normally distributed. The likelihood ratio statistic 

A = -2( in  L(xl0 ~ - In L(xl0~ (14) 

where 0" is the MLE under a jump-diffusion specification, and 8 ~ is the MLE correspon- 
ding to the situation when no jump structure is present (i.e., $ = 0). A is asymptotically 
x~-distributed with d - 2 degrees of freedom, where d denotes the number of parameters 
to be estimated 4. Estimates of the standard errors of 0" are obtained from the main 
diagonal of the inverse of the Hessian evaluated at 0". 

4 Empirical Results  

The empirical tests of both types of jump-diffusion processes were performed on the 
DAX stock index s and 48 common and preferred stocks with traded options. The raw 
data consist of daily share prices (Kassakurse) quoted at the Frankfurt Stock Exchange 
spanning the 30-year period from January 1, 1961 through December 31, 1990. The 
data source is a DFDB s daily stock price file, wherein cash dividends, issue rights, stock 
dividends and splits are accounted for by adjusting previous prices downward. The stock's 
rate of return of trading day ~ is then defined as X t  = ln(S, /S,_1) where St - ,  is the 
adjusted share price of the preceding trading day. Accordingly, weekend and holiday 
returns are treated as overnight returns. A weekly rate of return is defined as the difference 
between the logarithm of two successive Wednesday prices. 

Table 1 summarizes the Poisson jump-diffusion parameter estimates for the DAX stock 
index across different subperiods. In addition to the 5 parameters to be estimated (in- 
stantaneous mean g and variance a 2 of the diffusion component, the mean number of 
abnormal information arrivals (jumps) per unit time ~, the mean p j  and variance ~ of 
the (logarithmic) jump size) the table reports on the annualized total standard deviation 

3We used a FORTRAN routine (E04JAF) available in the NAG program hbrary. All calculations were 
done on the IBM 3090 mainframe of the Rechenzentrum der Universit~t Karlsruhe. 

2 4The null hypothesis can be rejected if A > X(d-~;a) for some significance level a. For d = 5 the 
critical values of A are 6.25, 7.81 and 11.35, for ct =0.10, 0.05 and 0.01, respectively. 

5The DAX is a capital weighted index of 30 stocks actively traded on the Frankfurt Stock Exchange. 
Since 30.12.1987 the DAX is quoted continuously during the trading hours and is supposed to be the 
most important German stock index. 

eDFDB (Deutsche Finanzdatenbank) is a German capital market data base maintained with the 
support from Deutsche Forschungsgemeinschaft (DFG). 
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(volatility) of the jump-diffusion process (VOLA) r the log-likelihood value and the like- 
lihood ratio test statistic (A). Standard errors are not provided, since these are small 
enough to guarantee the statistical significance of all estimated parameters. Based on the 
likelihood ratio test, in the majority of cases we have evidence implying the existence of 
a jump structure in DAX returns. Except for the subperiods in between 1971 and 1980 
the null hypothesis of a pure diffusion process is rejected at the 1% significance level s. A 
comparison of the results based on daily returns (panel A) and weekly returns (panel C), 
shows that  the jump component is statistically more significant for daily data. 9 However, 
when eliminating Monday and Friday returns in daily return series (panel B), the sta- 
tistical significance of the jump structure is even lower than with weekly data for some 
subperiods (1966-1970, 1971-1975 and 1971-1980). 

Table 2 and 3 report the MLEs of the five parameters for 48 common and preferred stocks 
based on daily and weekly return data from 1961 to 1990, respectively. The standard errors 
of the estimates not reported here indicate that most of these estimates are statistically 
significant. The null hypothesis was rejected in all cases for daily returns and for 44 
out of 48 stocks for weekly returns. We found that in the subperiods the likelihood 
ratio test statistic is always significant for daily returns. For weekly returns, however, 
the null hypothesis is rejected for 61.1%, 56.8% ,77.8% and 86% of the common and 
preferred stocks considered in the subperiods 1971-1975, 1976-1980, 1981-1985 and 1971- 
1980, respectively. In the subperiods 1966-1970 and 1986-1990 this percentage is close to 
94%. In all other subperiods the null hypothesis can be rejected for all stocks considered 
in the sample 1~ 

Furthermore, we examined the explanatory power of the Bernoulli-type jump-diffusion 
model under the restrictive assumption/zj  = 0 for the sample period from January 1, 
1980 to December 31, 1988. For daily returns this Bernoulli jump-diffusion model has 
much lower descriptive power than the Poisson jump-diffusion model restricted in the same 
way. 11. For weekly returns the Schwarz criterion shows that sometimes the Bernoulli jump- 
diffusion model is even 'better '  than the Poisson jump-diffusion model. The Bernoulli 
jump-diffusion model is 'better '  than the normal distribution as indicated by the likelihood 
ratio test. The mixture of a pure diffusion process with a jump process either in form of 
a Bernoulli-type or Poisson-type jump increases the descriptive power of the model. 

Figure 1 visualizes the peakedness and the thicker tails of the empirical density function of 
daily SIEMENS stock returns observed between January 1, 1980 and December 31, 1988. 

~VOLA- [(82+ ~(~ + ~ ) ) .  n] ,/2 where n = 52 (weeks a year) and n = 250 (trading days per year) 
when using weekly and daily estimates, respectively. 

SAkgiray, Booth and Loistl (1989) report a result which seems to be slightly inconsistent with one of 
ours. Based on weekly returns of a self-constructed index of 48 actively traded stocks they report, unlike 
our paper, a statistically significant jump structure for the period 1976-1980. 

9This observation confirms corresponding results for a value-weighted index including all stocks on the 
New York Stock Exchange and the American Stock Exchange as documented in Jarrow and Rosenfeld 
(1984). 

1~ compare our results with the results of earlier papers (e.g. Ball and Torous (1985)) the parameters 
were also estimated under the assumption p., = 0. In comparison with the unconstrained model little 
of the explanatory power of the model was lost, but the values of all other parameters were influenced. 
Therefore the results obtained for the unconstrained model are more valuable. 

11To compare the Bernoulli- with the Poisson jump-diffusion model we used the Schwarz criterion (SC) 
defined as SC _= In L(xl0 ) - din ~ where d is the number of independent parameters and m is the 
sample size. 
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Figure h Density functions resulting from different processes based on daily returns 
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Figure 2: Density functions resulting from different processes based on weekly returns 

The two remaining density functions result from the parameter estimates of the normal 
distribution and of the distribution of the constrained (i.e., with ~j  = 0.) Poisson jump- 
diffusion process. The density function of the Poisson jump-diffusion process approximates 
the peakedness of the empirical density function of the returns much better than the 
normal distribution. The values of kurtosis and skewness are 5.41 and -0.27 respectively, 
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P a n e l  A :  D a i l y  R e t u r n s  

Period 61-65 66-70 71-75 76-80 81-85 86-90 

m 1253 1251 1249 1252 1249 1247 
,~ 0.095 0.097 0.097 0.170 0.658 0.060 
a s x 104 0 . 5 6 7  0 .620  0 .906  0 .366  0.371 1.302 
a~ x 103 0.547 0.217 0.075 0.040 0.052 1.497 
p x l0 s -0.414 -0.311 0.427 -0.133 0.825 0.309 
p j  x l0 s 2.350 3.624 -2.292 0.043 0.0004 -4.933 
VOLA 16.52 14.51 15.69 10.40 13.34 23.52 
In L 4085 4127 3991 4516 4207 3615 
A 346.0* 99.86* 1.60 5.24 30.98* 279.1" 

61-70 

2505 
0.076 
0.609 
0.466 

-0.320 
3.218 
15.58 
8209 

457.3* 

71-80 

2501 
0.226 
0.543 
0.073 
0.068 

-0.129 
13.30 
8414 

27.96* 

81-90 

2496 
0.071 
0.867 
0.780 
0.759 

-4.750 
18.97 
7731 

514.7" 

61-90 

7501 
0.062 
0.693 
0.558 
0.168 

-0.662 
16.11 

24277 
1177" 

P a n e l  B :  D a i l y  R e t u r n s  w i t h o u t  M o n d a y  a n d  F r i d a y  r e t u r n s  

Period 61-65 66-70 71-75 76-80 81-85 86-90 

m 753 752 750 757 753 751 
)~ 0.072 0.417 0.003 0.074 0.677 0.054 
er 2 x 104 0.625 0.519 0.973 0.407 0.395 1.347 
a~ x 103 0.730 0.519 0.000 0.060 0.053 1.144 
p x los -0.154 0.232 0.479 -0.047 0.714 0.276 
p j  x 103 4 .631  0 .337 -20.06 1 .713 0.395 -0.683 
VOLA 17.05 13 .78  15 .70  10 .60  13.71 22.16 
In L 2437 2501 2391 2709 2512 2185 
A 228.2* 7.88 0.20 5.20 16.02" 94.88* 

61-70 71-80  8 1 - 9 0  61-90 

1504 1507 1505 4517 
0.062 0.151 0.067 0.056 
0.637 0.606 0.925 0.727 
0.491 0.075 0.639 0.501 
0.108 0.230 0.781 0.383 
3.423 0 .040 -2 .573 0.117 
15.40 13.41 18.40 15.87 
4932 5051 4653 14599 

259.2* 8.80 178.5" 508.0* 

P a n e l  C :  W e e k l y  R e t u r n s  

Period 61-65 66-70 71-75 76-80 81-85 86-90 

m 251 250 250 253 251 250 
0.096 0.201 0.509 1.313 2.407 0.210 

a 2 x 103 0.274 0.344 0.439 0.187 0.055 0.520 
~ x l0 s 0.295 0.106 0.029 0.001 0.011 0.167 
/J x l0 s -0.275 -0.058 -0.048 0.301 0.623 0.480 
/~j x 102 1.922 0.458 0.267 -0.275 -0.095 -2.310 
VOLA 17.55 17.06 17.49 10.44 12.98 22.60 
In L 614 589 575 712 652 526 
A 74.8* 15.2" 1.00 0.06 31.7" 38.3* 

61-70 71-80 81-90 61-90 

501 503 501 1505 
0.123 0.201 0.167 0.122 
0.321 0.283 0-356 0.333 
0.199 0.057 0.172 0.179 

-0.180 -0.048 0.447 0.065 
1.230 0 .303 -1 .373 0.024 
17.31 14.41 18.74 ~6.93 
1200 1261 1154 3597 

82.6* 12.6" 86.5* 185.5" 

*Indicates significance at 1% level. 

T a b l e  1: Po i s son  J um p- D i f f u s i on  P a r a m e t e r  E s t i m a t e s  for t h e  D A X  Across  

Different  S u b p e r i o d s  
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Stock m A o" x 10 4 cry • I0 3 p X 10 3 p.1 X 10 s VOLA In L A 

AEG 
AGIV 
BABST 
BABVZ 
BASF 
BAYER 
BAYVER 
BBC 
BEKULA 
BHF 
BMW 
COBANK 
COGUMM 
DBENZ 
DEGUSS 
DREBA 
DTBANK 
HARPEN 
HOECHS 
HOESCH 
HYPOBK 
K+S 
KARSTA 
KAUFHF 
KHD 
KLOECK 
LINDE 
LUFTST 
LUFTVZ 
MANNES 
MANST 
MANVZ 
MERZHO 
METALL 
NXDORF 
PREUSS 
RU ETG E 
RWEST 
RWEVZ 
SCHERI 
SIEMNS 
THYSSN 
VARTA 
VEBA 
VEW 
VIAG 
VW 
WELLA 

7492 0.1154 1.3470 2.8500 -0.6274 3.6770 34.10 20288.49 40576.98 
4035 0.7206 0.3176 0.2227 -0.3956 1.3230 21.99 11903.07 1226.84 
7230 0.4252 0.6223 0.4617 -0.3249 0.7251 25.43 20479.57 2513.18 
4275 0.4251 0.7407 0.5274 -0.1894 0.5920 27.31 11781.92 1333.20 
7493 0.3159 0.6103 0.2404 -0.0901 0.7817 18.52 23115.66 1016.56 
7473 0.2720 0.6919 0.2884 -0.3028 1.7147 19.26 22785.88 1164.96 
7473 0.4887 0.4284 0.2359 -0.3969 1.3068 19.93 22736.04 1669.62 
7458 0.5896 0.4046 0.2957 -0.1986 0.7855 23.19 21715.00 2093.10 
6087 0.2081 0.5226 0.6620 -0.0246 1.2720 21.82 18702.60 26431.98 
7493 0.6998 0.2410 0.1367 -0.1995 0.6120 17.32 23784.16 1458.90 
7473 0.2885 0.9052 0.5823 -0.2119 2.3340 25.50 21041.62 2183.74 
7474 0.6329 0.3583 0.1962 -0.3891 0.9194 20.03 22646.12 1473.76 
7492 0.7135 0.5969 0.3011 -1.2210 1.7790 26.31 20588.63 1336.22 
7478 0.2223 0.7894 0.6101 -0.1801 2.2270 23.22 21903.89 2212.00 
7493 0.2404 0.6346 0.4877 -0.2160 1.2531 21.28 22608.24 2340.64 
7493 0.6261 0.4541 0.1929 -0.5411 1.2572 20.44 22416.04 1185.34 
7493 0.3830 0.4734 0.2257 -0.2510 1.4584 18.34 23334.22 1460.40 
7444 0.5643 0.5493 0.2832 -0.9915 2.5301 23.36 21420.00 1638.26 
7493 0.3501 0.5475 0.2179 -0.1384 0.8795 18.12 23296.37 1076.52 
7473 0.4985 0.8366 0.4006 -1.3461 2.9346 26.82 20443.65 1378.16 
7473 0.6078 0.2658 0.1859 -0-3827 0.9882 18.72 23323.99 2100.36 
7488 0.4169 0.7372 0.4088 -0.5610 1.6052 24.76 21178.85 1621.54 
7441 0.4903 0.4246 0.2576 -0.3009 0.9934 20.57 22472.70 1906.52 
7465 0.5039 0.5723 0.2665 -0.4971 1.3190 21.93 21882.56 1399.66 
7464 9.4745 0.7365 0.4467 -1.0389 2.2682 26.83 20572.82 2035.18 

7472 0.3943 0.7671 0.3726 -1.1165 2.5274 23.78 15704.31 1079.88 
7479 0.4226 0.5459 0.3065 -0.5279 1.8611 21.54 22216.60 1678.52 

:4336 0.2508 1.5628 1.0548 -0.2939 1.7760 32.47 11176.52 1190.04 
4291 0.1850 1.8117 1.3181 -0.1106 2.3348 32.64 11043.15 1317.92 
7474 0.2475 0.8370 0.4201 -0.3393 2.5027 21.75 22005.03 1411.72 
7446 0.3207 0.8356 0.5783 -0.4535 1.9501 25.99 20892.46 2943.52 
3938 0.5317 0.8241 0.3556 -0.6697 1.9476 26.15 10825.79 745.66 
3738 0.4966 0.4218 0.3410 0.0417 0.5701 23.00 10983.46 1295.00 
6706 0.6343 0.3737 0.3272 -0.6522 1.1653 24.79 19168.94 4357.78 
1632 0.2161 1.0683 1.1073 -0.1781 0.1991 29.42 4469.22 685.96 
7492 0.2950 0.8242 0.5524 -0.8037 3.7325 24.97 21309.71 5181.36 
?356 1.2588 0.1592 0.1573 -0.2850 0.4837 23.14 21140.97 1511.62 
7474 0.3910 0.4231 0.2496 -0.3699 1.5905 18.77 23265.70 2063.54 
4399 0.1460 0.6952 1.1714 0.2333 1.5266 24.54 13202.78 2698.78 
7493 0.4037 0.4908 0.2404 -0.2535 1.5575 19.18 23020.66 1528.12 
7493 0.3939 0.4656 0.2216 0.1086 0.4925 18.30 23340.34 1505.72 
7474 0.6810 0.4817 0.1825 -1.4109 2.1680 20.96 16270.12 704.34 
5114 0.2418 0.8624 0.8469 -0.3269 2.9240 27.07 14406.64 2399.46 
4993 0.2352 0.7932 0.3963 0.1049 1.0823 20.78 14912.76 890.80 
4333 0.3295 0.3905 0.4145 -0.1540 2.0026 21.03 13360.86 1993.20 
1137 0.2966 0.8845 0.6548 -0.2786 3.7088 26.77 3170.47 390.46 
5107 0.1671 1.5603 1.1919 0.1061 0.6975 29.80 13613.61 1392.62 
1800 3.2302 0.1592 0.0550 -7.5850 2.4608 23.08 5036.87 197.54 

Index 

DAX 7502 0.0618 0.6932 0.5580 0.1684 -0.6624 16.11 24277.05 1177.38 

T a b l e  2: P a r a m e t e r  E s t i m a t e s  Based  o n  Dai ly  S tock  R e t u r n s  

( J a n u a r y  1, 1961 - D e c e m b e r  31, 1990) 
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Stock m A ~,xl0 s ~x102 /~x102 #]x102 VOLA InL A 

AEG 
AGIV 
BABST 
BABVZ 
BASF 
BAYER 
BAYVER 
BBC 
BEKULA 
BHF 
BMW 
COBANK 
COGUM 
DBENZ 
DEGUSS 
DREBA 
DTBANK 
IIARPEN 
HOECHS 
HOESCH 
HYPOBK 
K+S 
KARSTA 
KAUFHF 
KHD 
KLOECK 
LINDE 
LUFTST 
LUFTVZ 
MANNES 
MANST 
MANVZ 
MERZHO 
METALL 
NXDORF 
PREUSS 
RU ETG E 
RWEST 
RWEVZ 
SCHERI 
SIEMNS 
THYSSN 
VARTA 
VEBA 
VEW 
VIAG 
VW 
WELLA 

Index 

DAX 

1505 0.0922 0.8428 2.3969 -0.1830 0.9348 39.90 2743.89 1657.44 
754 0.8946 0.1355 0.0886 -0.1862 0.5045 22.24 1614.60 139.42 
1458 0.5653 0.3773 0,1686 -0:1961 0.3400 26.37 2853.05 235.54 
754 1.2413 0.1462 0,0815 -0.3478 0.2720 24.63 1512,76 100.50 
1505 0.3428 0.3373 0.0915 -0.0541 0,4024 18.48 3431,65 104.36 
1503 0.0989 0.4896 0.2340 0.0237 0.6163 19.41 3368.28 132.64 
1502 0.7035 0,2253 0.0936 -0.0859 0.2987 21.51 3232.29 195.72 
1499 0.3548 0.3620 0.2002 -0.0365 0.4784 23.70 3129.99 338.40 
3,220 0,1349 0.3110 0.5030 0.0597 0.4458 22,71 2778.58 2285.48 
1505 1.5761 0.0424 0.0372-0.1185 0.1457 18,13 3475.41 197.22 
1502 0.7017 0.3184 0.1436 -0.2773 0,7341 26.63 2925.97 275.98 
1503 1.1132 0.1482 0.0638 -0.2809 0.3418 21.29 3232.05 159.88 
1505 1.3003 0.1562 0,0907 -0.50'22 0.4089 26.57 2907.60 178.46 
1502 0.4742 0.3075 0,1715 -0.0697 0.4947 24.27 3099.45 297.40 
1505 0.4553 0.2843 0.1400 -0.2042 0.5489 22.05 3233.42 291.64 
1505 0.2929 0.4653 0.1631 -0.0708 0,6795 22.30 3170.49 164.84 
1505 0.1879 0.4609 0.1774 0.1430 0.0723 20.32 3302.80 134.86 
1491 0.4582 0.3336 0.1641 -0.3473 1.2331 24.51 3063.08 316.22 
1505 0.1857 0.3880 0.1561 0.0033 0,4636 18.83 3423.64 141.26 
1502 0.9940 0.2859 0.0985 -0.7595 0.8275 26,33 2913.71 163.58 
1502 0.0124 0.7307 0,0000 0.2252 -8.9531 20.78 3217.29 58.56 
1505 0.7558 0.3113 0.1377 -0.3175 0.4949 26.70 2917.76 235.90 
1496 0,5588 0.2708 0.1161 -0.1462 0,4356 21,99 3197.78 235.32 
1499 0,0131 0.9168 0.0000 0.2205 -9.9108 23.32 3036.92 54.38 
1500 0.6517 0.3991 0.1504 -0.2108 0.3634 26.86 2886.10 210.96 
1503 0.3117 0.5844 0.4110 -0.3749 0.9673 31.39 2763.06 466.36 
1501 0.4703 0.3251 0.1299 0.1017 0.0647 22.06 3193.17 217.44 
754 0.2783 0.7306 0.2970 0.0512 0.2723 28.47 1410.40 -241.46 
754 1.0884 0.3227 0.1081 -0.0004 0.1203 27.94 1407.75 -86.76 
1503 0.3488 0.4416 0.1680 -0.1192 0.7561 23.34 3114.03 197.10 
1495 1.1531 0.2372 0.0832 -0.3650 0,3953 25.13 2954.06 132.00 
754 0.2973 0.5777 0.1846 0.0757 0.2596 24.22 1519.83 78.98 
752 0.5148 0.2666 0.1621 0.0413 0,2490 23.96 1564.38 170.38 
754 0.5567 0.3933 0.1839 -0.1724 0,5585 27.31 1453.17 143.06 
326 0.2228 0.7234 0.3081 0.4357 -2.2415 28,13 620.02 361.84 
1505 0.2506 0.5545 0.3314 -0.0891 0.9584 27.06 2952.38 453.72 
1475 0.7888 0.2366 0.1045 0.0280 0.1449 23.51 3042.43 190.82 
1503 0.6421 0.1980 0.0870 -0.0977 0.3558 19.94 3357.44 223.98 
754 0.6198 0.1735 0.0671 0.0040 0,3592 17.62 1773,03 -288.98 
1505 0.3486 0.3389 0.1342 -0.0324 0.6339 20.69 3302.76 238.12 
1505 0.3227 0.3355 0.1292 0.0812 0.2251 19.80 3358.61 204.32 
1503 2.1017 0.0888 0.0467 -0.4435 0,2629 23.75 3033.99 78.78 
1004 0.6487 0.3065 0.1036 0.0609 0.0929 22.56 2099.75 112.22 
1004 1.5268 0,1258 0.0453 0.0907 0.0603 20.62 2171.90 61.12 
753 0.5734 0.1169 0.0732 -0.0080 0,3058 16.79 1836.97 -189.68 
228 0.1770 0.6568 0.4316 0.4559 -0,2513 27.19 445.57 42,42 
1004 0,5392 0.6630 0.1517 -0.1245 0.5059 27.88 1870.40 70.64 
362 0.8780 0.2081 0.1044 0.1951 0.0571 24,19 737.16 55.04 

1505 0.1222 0,3325 0.1793 0.0646 0.0241 16.94 3597.42 185.50 

Table 3: Parameter  Est imates Based on Weekly Stock Returns 
(January 1, 1961 - December 31, 1990) 



279 

both significant at the 1% significance leveP 2. Figure 2 shows the density functions 
for weekly returns for the same sample period. The density function of the constrained 
Poisson jump-diffusion process now approximates the skewed empirical density function in 
a less satisfactory way. This is mainly due to the fact that the constraint/zj = 0 prevents 
the estimated density function from being skewed. The values for kurtosis and skewness 
of the empirical density function are 8.28 and -1.0, respectively, both significant at the 
1~163 significance level. Nonetheless is the density function resulting from the constrained 
Poisson-type jump-diffusion process compared to the normal density function a slightly 
better approximation of the empirical density function. 

5 S u m m a r y  and Conclus ions  

Seminal models of finance assume that stock price movements can be modelled by a pure 
diffusion process (for example, the Black- Scholes option pricing model and the continuous- 
time asset pricing models) or assume that jump risk is diversifiable (for example, the jump- 
diffusion option pricing model of Merton (1976a)). Based on daily and weekly return data, 
we conclude that all stocks examined contain a statistically significant jump component. 
The same is true for the DAX although the magnitude of the jump component is smaller. 
Since the DAX is supposed to be a good proxy for the market portfolio the economic 
implication is that jump risk is not diversifiable. It seems therefore that Merton's (1976b) 
jump-diffusion model is not able to remove the wellknown pricing biases of the Black- 
Scholes model, such as those documented in Trautmann (1986, 1991) for the Frankfurt 
Options Market. In this case a market equilibrium based option pricing model, such as 
Naik and Lee (1990) or a complete markets based option pricing model such as Jarrow 
and Madan (1991), could prove to be more appropriate to predict stock option prices. 
Research along these lines is currently underway. 
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