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1. Introduction

Many empirical papers document the fact that the distribution of stock returns
exhibits fatter tails than would be expected from a normal distribution. This
might explain some of the pricing biases of the Black/Scholes model, which 1s
based on a normal return distribution. Given this result, alternative option
pricing models should be based on one of the following three classes of retwn
models: (1) a stationary process, such as a paretian stable or a student’s t- -
distribution, (2) a mixture of stationary distributions, such as two normal
distributions with different means or variances, or a mixture of a diffusion and 2
pure jump process, or (3) a distribution such as a normal distribution with time-
varying parameters. Although any of these choices could improve on the fit of
the normal distribution, only a few are economically as appealing as the mixed
jump diffusion model. According to this model, the total change in the price of a
stock is equal to the sum of two components: (1) the normal fluctuations in price
due to new information that causes only marginal changes in stock’s value
(“diffusion component’y, and (2) the abmormal price changes due to the
infrequent arrival of new information that has more than a marginal effect on
price (‘jump component’). This mixed jump diffusion model was first studied by
Press (1967) and incorporated into the theory of option valuation by Merton
(1976a). Although a considerable number of papers report a statistically
significant jump component in stock returns as well as in index returns
(Jarrow/Rosenfeld 1984, Ball/Torous 1985, Akgiray/Booth/Loistl 1989,
Beinert/Trautmann 1991), few papers have investigated the effect of jumps in
the underlying stock price process on option values. In the first pubhshed
empirical paper on this subject, Ball/Torous (1985) find no operatlonally signi-
ficant pricing differences between the Black/Scholes model and Merton’s
idiosyncratic jump risk model when pricing options on NYSE stocks. By con-
trast, Bates (1991) finds that a systematic jump risk model fits the actual data
markedly better than the Black/Scholes model in the case of the transaction
prices of S&P 500 futures options.
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The purpose of this paper is threefold. First, we provide an economic
rationale for the differences between Black/Scholes values and jump model
values when jump risk is systematic and idiosyncratic, respectively. Second, we
use a comprehensive sample of stock options traded at the Frankfurt Options
Market, between March 1983 and June 1990, and at the Deutsche Terminborse
between January 1990 and December 1991, to examine the historical stock price
Jjump impact on option values. Third, we take the systematic jump risk model to
infer the stock price distributions implicit in observed option prices before,
during, and after crash periods. The paper is organized as follows. Section 2
presents different formulae for valuing stock options when the underlying stock
process includes systematic and idiosyncratic jumps, respectively. We also
compare the model values for representative parameters. Section 3 examines the
impact of stock price jumps on option values when using historical parameter
estimates. The stock price distributions implicit in option prices according to the
systematic jump risk model of Bates (1991) are presented in section 4. Section §
concludes the paper.

2. Option valuation when jump risk is present

Options are usually priced as the discounted expected value of their future
payoffs where the expectation is taken over the risk-neutral, rather than the true,
distribution of the underlying asset. As long as the option's payoff can be
replicated by a dynamic trading strategy in the underlying asset and a riskless
bond, the equivalent risk-neutral distribution can be derived via no-arbitrage
conditions. Unfortunately such a replication is nof possible if the stock price, S,
follows a general jump-diffusion process of the form

"'Sdit-’=aDdt+0'dBt +LdNt s (l)
o
where

ap drift rate of the diffusion component,

o volatility of the diffusion component, o >0,

B {B, 120} is a standard Brownian motion,

N {Ny t20} is a Poisson counting process (independent of B) with
parameter A>0, denoting the expected number of jumps per unit time,

L (Si— S, V/S,- represents the percentage change in the price of a stock

due to a jump at time ¢, with In(1+L) ~ N(u, o7), and k = E(L)=e"-1
with o= py+ (1/2) of,

Deriving the appropriate risk-neutral probability distribution requires
additional restrictions on distributions and/or on preferences. Merton's (1976a)
idiosyncratic jump risk model (henceforth. LJD-model) assumes, for instance,
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that jump risk is diversifiable. Under this simplifying assumption Merton
derives an option valuation formula that is independent of investors’
preferences. Unfortunately, several papers report that Merton's assumption of
diversifiable jump risk might not be realistic. For instance, Beinert/Trautmann
(1991) report that DAX returns have a statistically significant jump component
implying that jump risk must be deemed to be systematic in the German stock
market If Jump mk is assumed m be systenmtxc then all stock pnces and the

price the addltmnal mk when jump nsk is sysz‘emm‘w Bates (1991) &xtends the
equilibrium-based model of Cox/Ingersoll/Ross (1985), while the alternative
model of Amin/Ng (1993) is an extension of the pure exchange mode! proposed
by Rubinstein (1976). Both of the resulting formulae depend on risk preferences.
The following analysis is based on Bates’ version of the systematic jump risk
model (henceforth SJD-model). We first present the valuation formulae of Bates
and Merton and then compare the two models with the Black/Scholes model
(henceforth BS-model).

2.1 Systematic jump risk call formulae

Bates (1991) assumes the existence of a representative investor who seeks to

maximize his expected utility of lifetime consumption and whose optimal
invested wealth, W,, follows a jump diffusion process

aw,

—t Ak —Lldtt oy B, 4L dN, (2)
| %w W, Tw P Ew Ay

w,_

where Y, represents the optimal consumption at time t. Omne plus the
percentage wealth jump sizes, (1+L,), is log-normally distributed, In(1+L,) ~
N(psw, 6iw). Like in the IJD-model jump sizes are independent and identically
distributed. The covariance between the stock returns and the change in the
optimal invested wealth, conditional on no jumps, is given by op sy, while the
covariance between jumps is defined as Cov(ln(1+L),ln(1+ Ly )) =0, g -
Under the assumption that the investor’s direct utility function is given by
U,y=Y"%/1-R), with R as coefficient of relative risk aversion', Bates
derives the following 'risk-neutral’ valuation formula for European calls; *

' Risk-nentrality obtains for R=0, and R—»1 results in logarithmic preferences.

? Although formula (3) is written in a 'risk-neutralized' fashion, the call value depends via
A* znd k#* on the risk aversion parameter R. Like in the pure diffusion environment, there
is no known analytic solution for American puts when the underlying stock cbeys a jump
diffusion process. Bates (1991) generalizes McMillan's (1987) quadratic approximation to
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where
din= [m(S/Kjf +raT+{o2l +n o%) /z,} (2T +n 097)1/2,
dyn= dan(oQT +n o{ﬁ)l/z,,
3= dex{~R am, g +(RI+RIo 1y)/2)
rp= - ,1*){»;*+(n‘u})/ T,

K= Xp(a:f?)—l .

*
ay= aj-Roj SW. |
()= standard normal cumnulative density fimction.
Within this equilibrium framework the drift of the stock price process, o, and
the riskless interest rate, », are endogenously determined. The terminal stock
price, Sy, resulting from the 'risk-neutral' process is given by:

) ) | . .
St =8, exp l(r‘ - %0*2 A*k*)T to Byt z In(l+ L*)J . “4)

1

Bates’ option formula (3) can be specialized to all known option formulae
proposed for a jump diffusion framework. Assuming an investor with
logarithmic utility (R=1), the above formula collapses to that presented by Ahn
(1992). If the call is written on a proxy of the market portfolio, we have gy sp =
dosw = L, Ow= 0 pw =y ogw= oyand yw = w4, and we obtain the formula
proposed by Naik/Lee (1990). Furthermore, if the jump risk is diversifiable
(idiosyncratic), i. €., duw = Ouw = Trws = 00, or the representative investor
is risk-neutral, i. e., R=0, the call formula (3) collapses to Merton's idiosyncratic
Jjump risk formula for European Calls:

emﬂ,(l -+ k)T ‘: &(1 N k)T)n

By
S
i

P8

0 ! g Qj{dh “) - ke w(d 2, n)] )

American option values for jump-diffusion process. Amin (1993) approximates the jump-
diffusion processes with sufficient accuracy using a Markov chain.
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Finally, in the special case of a Geometric Brownian Motion governing the
underlying stock price, i.e., for 1= 0 or A — c« (while the jump coefficients tend
to zero), we have d, , = d, = [In(S/K) + (r + o*/D)TVoNT, and d,, = dy= dy~NT
and the formulae (3) and (5) specialize to the Black/Scholes formula for
European calls: '

CBS = S ®(dy) - T K @(dy). | ©

2.2 A mmparisé)n of Black/Scholes-values and jump-
diffusion values

The impact of jumps on option values is illustrated for an investor who errone-
ously adopts the BS-formula, when either the SJD-formula or the IJD-formula
should be used. We also demonstrate the valuation errors which risk averse
investors using the IJD-formula take into account when jump risk is systematic
and the SID-formula with R>0 should be used.” We calculate model values for
calls written on a stock index. The annualized volatility estimate of the pure
diffusion process, VOLA, corresponds to the total volatility of the jump-

diffusion process, VOLA= ‘\/ a2+ A y% + af}) = 30%, the strike price is K = 100,

the riskless interest rate is » = 10%, and 80% of the total variance is due to the
jump component, i. e, y = Muf + o7 ) / (6 + Mpi + of)) = 0.80. Besides a
symmetric distribution of actual stock returns (when p; = 0), we allow for
negative skewness (when py= —0.20 or py= —0.10) and positive skewness (when
gy = 0.20 or py; = 0.10) in the actual return distribution.’ Since substantial
differences between the BS-value and the SJD-value occur only for a low jump
intensity, we choose the rather low jump intensity of A = 1, that is, on average
one jump per year.’

In Table 1 the numbers in bold face correspond to a symmefric distribution of
actual stock returns. The column headed ‘BS’ gives BS-values for short-term (t
= 1/12, i. e., one month) and long-term (T = 1, i. e., one year) out-the-money
(OTM) calls, at-the-momney (ATM) calls, and in-the-money (ITM) calls,

* The same error occurs if risk averse investors erroneously value options as if they were
risk-neutral when recognizing that jump risk is systematic.

‘Recall that in the BS-model the actual, as well as the risk-neutral, return distribution are
symmetric. In the case of the Poisson-jump diffusion model, skewness specializes to [A pJ
(W2 + 302/ [ (T2 ] (62 + 2T 2 + 0632 ) 13/2 |, and, for R > 0 the risk-neutral
retwrn distribution will always be skewed. :

* For a jump imtensity of A = 100, Trautmann/Beinert (1995) demonstrate that the
deviations of the SJD-values from BS-values are negligible, even for short-term ATM
options exhibiting the largest absolute differences in value.
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respectively. The columns headed ‘1D’ and ‘SJD’ contain the corresponding
call values according to the {JD-model and to the SID-model (for K = 3),
respectively, While for the BS-model and IJD-model there is no difference
between the shapes of the actual and the risk-neutral return distributions, the
shape of the risk-neutral return distribution underlying the SJD-model depends
on R as depicted in column 1 of Table 2 for options with one year to maturity.
Since wr = py — R 6f <0 for p; = 0 and R > 0, the risk-neutral return distribution
is skewed to the left. The columns headed “Diff® contain the difference between |
the corresponding jump diffusion model value according to the symmetric actual
return distribution and the model value according to skewed distributions. Table
2 depicts the differences between the BS-values and the IJD-values (middle
column) as well as the differences between the BS-values and SJD-values for R
= 3 (right hand column) with respect to different money ratios, for options with
one month and one year to maturity, respectively. As distinguished from Table
1, we consider in addition to a symmetric actual return distribution, only one
negatively skewed (when p;= -0.20) and only one positively skewed (when p;=
0.20) actual return distribution.

Turning first to the symmetric return distributions; a comparison of BS-values
and IID-values shows that, for options with one month to maturity, the BS-value
 exceeds the ID-value for ATM options, while the opposite is true for OTM
options and for I'TM options. But only in the case of the OTM options can the
percentage difference® almost amount to 100%. This v-shaped relationship
between the IJD-value and the BS-value was first documented by Merton
(1976b). For options with one year to maturity, all BS-values exceed the IJD-
values. Clearly, these effects are explained by the shape of the underlying risk-

neutral return distributions, as depicted in column 1 of Table 2 .

In the case of a symmetric return distribution, the SJD-value exceeds the BS-
value, except for short-term OTM options. The interaction between the so-called
volatility effect and skewness effect may explain this. For index options, the

risk-neutralized volatility’, VOLA" = Jo? + ﬂf’(( )2 +u{“}) , exceeds the actual

volatility for p; < (1/2) Ro? and R > 0. For y;> (1/2) R o7 and R > 0 the opposite
is true. Since we have VOLA ™ > VOLA for ;= 0, the SID-value exceeds the
BS-value. The skewness effect describes the shift to the left of the risk-
neutralized refurn distribution if p; < (1/2) Ro?, and the shift to the right for ;>
(1/2) R of. Since we have p; < jt; = 0, the negatively skewed risk-neutral return
distribution causes the SJD-value of OTM calls to be smaller, while the SJD-
value for ATM calls and ITM calls are higher by comparison with a symmetric
risk-neutral return distribution. The skewness effect leads to a smaller SJD-

*The mean percentage difference is defined as the mean of [(CIJD - CBS)/ CIJD] 100.
"Recall that A# = Aexp(-R pJ +oIJ2 R2/2) and pJ* = pJ ~ R ¢J2
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value, compared to the BS-value for OTM calls with a short time to maturity,

because of the smaller risk-neutral probability to end up in-the-money.

Table 1: Calls written on the market index: Influence of the jump component (Fixed

parameters:® K=100, r=10%, A=1, y=0.8, VOLA=30%)

- 1.00
(.20
~0.17

0.30

1.00
~0.10

~0.07
0.30

1.00
0.10
(.14
0.30

1.00
0.20
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0.30

2.10
~0.30
—{.52

0.52

1.78
~{.29
~{.41

0.33

1.38
—0.22
0,23

0.43

T (.98
-0.09
-0.06

0.29

0.63
0.10
0.08
0.21
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(8=100)

1T
(S=120)

1=1/12
1=1

1=1/12
=1

=112
=1

6.02
576

3.87
16.73

20.88
32.41

-0.30
~1.40

0.08
0.48

0.26
0.70

-0.18
~-1.08

-0.01
0.15

0.15
0.50

6.31
5.52

2.74
15.89

2111
32.19

0.18
1.08

0.07
0.29

-0.16
-0.58

0.26
1.50

0.19
0.79

-0.27
-0.81

0.71

2.69

-{.05
2.90

0.80
3.01

0.64
2.70

0.09
7.19

3.41
20.10

21.94
36.12

0.04
-2.80
=0.72
-4.29
-0.71
-3.64

3,52

70.08

-1.05
~6.88

~1.08
—6.02

® The drift parameters op and apy are determined endogenously by the Euler

conditions.
® RN denotes the risk-neutral return distribution.
° The ‘risk-neutral’ jump intensity is defined as "=\ exp(-Rp; + R o7 /2).
4 The ‘risk-neutral’ mean of In(Z+1) is: py= py - R o7.
“The ‘risk-neutral’ mean jump size per year.
fThe ‘risk-neutral’ volatility is given by: VOLA" =[(c” + 1"(( 17 )*+or)) 12
8 Diff = CP%uy 5 0) — C¥P (g = 0).
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Table 2. Calls written on the market index: Deviations from Black/Scholes-values
(Fixed parameters® X=100, r=10%, VOLA=30%, A=1, 1=0.8)

Shapes of the risk-neutralized

rerurn distribution (T=1)

Deviatons from Black/Scholes-values if jump risk is

idiosyncratic® (or R=0)

systematic® and R=3

Panel A: ;=0 (i. e. the actual return distribudon is symmetric)
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1.0 ~0.4 - \ A - .
0.8~ =084 N\ . 7 I P
0.6~ L N P ;.
0.4—1 e=f.0 = “\ll" B\u~d,’!
e W wr § d

g:g,«,l M T "

' 0.6 0.6 1.0 L1 1.2 0.8 09 1.0 t.& 1.2

Return

Money ratio

Money ratio

Panel B: py=~0.20 (i. e. the actual return dismribution is neg

atively skewed)

1.8 — gy | CJID=C_BS €..SID~C..BS
1.6 A o= | 1o R —
1.4~ 3 ) 8D . - u
1.2~ X y 5 "
‘ I Y 0 - 4 o
1.0~ l'i : g
0.8~ ' 5 e
0.6~ =1~ . -
0.4"‘ 0 - . 'l’
0-27 "2 U E— I T T
[
0.0 i !

-2 i ! Y 1 2

0.8 0.8 (.0 1.1 1.2
Money ratio

0.8 0.9 L.0 L1 1.2
Money ratio

Panel C: yy = 0.20 (i. e. the actual return distribution is positively skewed)

9 - -BS C.1ID-C_BS CSID-C..BS
~e=1JD 2 - i
—§J
o D 1 —\u . Q-—""_“\\\ ”1"‘"'
- '\"\"}\\ ] - \“"\ /"”
0 o \‘\\ e we
. SR
1 q \__‘\)\\__ s \\\\J/’ o
- B
O T 2 - 1 i 3 H i t i 1 T
-2 -1 ! P 0.8 0.8 1.0 1.1 1.2 0.8 0.9 1.0 §.1 1.2

Money ratio

Money ratio

* The resulting risk-neutralized parameters of the SJD-model are the same as in table 1.
® Deviations are plotted only for options with one month (dashed line) and one year

5

(solid line) time to maturity, respectively.
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A comparison between IJD-values and the SJD-values (with R = 3) for
symmetric return distributions (numbers in bold face in Table 1) shows, that for
ITM and ATM options the SJD-value is higher than the [JD-value. The same is
true for long-term OTM options, while for short-term OTM calls the IJD-value
exceeds the SJD-value. According to Amin/Ng (1993), the interaction between
the so called ‘drifi-effect’ and ‘discounting-effect’ explains this difference. As
long as the correlation between stock price jumps and wealth jumps is positive,
the stock price drifts upwards at a faster rate since the stock return premium is
higher under systematic jump risk relative to the diversifiable jump risk case.
Therefore, the 'drift-effect’ causes the options to be worth more under systematic
jump risk than under idiosyncratic jump risk. In contrast, the ‘discounting effect’
causes the value under systematic jump risk to be smaller than the value under
diversifiable jump risk. Wealth tends to jump with the stock return when jump
risk is systematic, while jumps in the stock price that increase the value of the
call tend to decrease the interest rate.® The direction of these effects depends on
the assumption about the sign of the correlation between wealth jumps and asset
jumps. Therefore, the above effects reverse themselves when a negative

correlation is assumed.

Skewness of the actual retwrn distribution changes the sign and magnitude of
the differences between the BS-value and the IJD- or SID-value.” According to
Tables 1 and 2, the v-shaped relationship between the BS-value and ITD-value
still exists for short-term options, but depending upon the sign of the skewness
- the v-shape is tilt to the right or to the left. For long-term calls the difference in
value increases (decreases) with the money ratio if the skewness is negative
(positive). In contrast to the 1JD-value, the SID-value increases slightly if the
return distribution becomes negatively skewed, except for short-term OTM calls.
For positively skewed return distributions the SJD-value is dramatically lower
compared to the symmetric case. This is mainly due to the volatility effect; the
risk-neutralized volatility is significantly smaller compared to that of the actual
return distribution. The shape of the risk-neutral return distribution, as depicted
in Table 2 column 1, serves as an explanation.

While the foregoing analysis is restricted to European calls, the same
differences in model values also hold for otherwise identical European puis
because of the put-call parity.

' According to Cox/Ingersoll/Ross (1985), the endogenous riskless interest rate is equal the
negative of the expected rate of change in the marginal utility of wealth.

* This is explained by the shape of skewed return distributions. Return distributions with a
negative (positive) skewness exhibit a larger probability for returns far below (above) the
mean than for returns far above (below) the mean. This implies that the mean retumn lies
above (below) the median if the return distribution has a negative (positive) skewness.
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3. Historical jump risk impact on option values

3.1 Data and estimation

A substantial jump risk impact on option values can only be expected if the
estimated model parameters reflect the statistical and economic signifi
the jump risk. We therefore pay particular attention to the values of calls whose
underlying parameter estimates are based on the extremely volatile stock returns
around the crash periods in October 1987 and October 1989."° The option price
data consist of options written on five actively traded stocks: Daimler Benz,
Deutsche Bank, Siemens, Thyssen and VW. Henceforth this sample is called
BIGS. More precisely, we examine only the subsample BIG5/NODIV since price
observations are eliminated if dividends were paid, or stock splits took place,
during the lifetime of the option. All option prices, stock prices, dividend and
split data, as well as daily stock returns, were taken, or generated, from the
Karlsruher Kapitalmarktdatenbank. The riskless interest rate appropriate to
cach option was estimated from the interest rate on three-month inter-bank time

deposits."’

The time-consuming parameter estimation for the Poisson jump-diffusion
process, which was performed only once a month during the sample period, is
based on 250 daily returns preceding the estimation date.'? Figure 1 shows the
monthly reestimated parameter values of the skewness and kurtosis according to

**The total sample covers the period from April 1983 to December 1991. During the post-
crash periods, to which particular attention was paid, trading took place on the Frankfurt
Options Market (FOM). But, since the opening of the Deutsche Terminbérse (DTB) in
Janmary 1990, trading in the most liquid ‘blue chips’ is no longer possible on the older
Frankfurt Options Market (FOM).

" Recall that in the SJD-model the riskless interest rate is endogenously determined. In
order to be able to compare the SJD-model with models whose r is exogenously given, we
endogenize instead the drift rate of wealth: the choice of o'W is such that the ‘endogenous’
r is equal to the observable r.

? The parameters of the pure diffusion process were estimated daily, using the 250
preceding daily stock returns and DAX-returns, respectively. Although the SJD-model
requires a simultaneous estimation of the jump diffusion parameters of all stocks’ returns
and the returns on the market proxy, we estimate them independently. The required
correlation structure of jumps in the stock price, and in the wealth, is estimated with the
following two-step procedure: (1) We identify the return of the DAX or an individual
stock as a ‘jump return’ if at least one of the two returns either exceeds 3% or is lower
than ~3%, and (2) the correlation between these selected returns serves as proxy for the
true correlation between jumps in stock retumn and aggregate wealth. Typically there is a
strong positive correlation between individual stock returns and DAX-returns.
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the jump diffusion process for SIEMENS returns. The historical return
distributions are negatively skewed during the crash month October 1989 and
during the year 1992, thus reflecting the stock price decline in both periods.
Beinert/Trautmann  (1991) show that the estimated jump component is
statistically significant for returns of single stocks as well as for DAX-returns.

100 -t Kurtesis =-=-=-- Skewness \ |
80 — « '
N
60— i
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] LM[\. A1 T | PR P a‘wf TS ke
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Figure 1: Skewness and kurfosis resulting from the parameter estimates of the
Poisson-jump diffusion process of Siemens returns

3.2 Results

Figure 2 depicts the mean differences (in DM) between BS-values and 1JD-
values with respect to different money ratios (left hand scale) for the post-crash
period from November 1987 to January 1988 and from November 1989 to
January 1990." In these post-crash periods, the pattern resembles that of the
positively skewed retnrns which are depicted in Table 2. This unexpected result
is due to the large positive returns after the October 1989 market crash which
obviously cause a positive skewness of the estimated return distributions for
some stocks. Figure 1 confirms the positive skewness of the Siemens return
distribution after the October 1989 crash. The expected v-shaped relationship
obtains for short-term and medium-term options, but the differences are

©The right hand scale corresponds to the plotted frequency distribution of observed money
ratios. - 0
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significant only for OTM options. On an average basis, the differences between
BS-values and IJD-values for OTM calls with a short, medium, and long
maturity are 0.30 DM (9.5%), 0.61 DM (3.9%), and 0.76 DM (3.3%),
respectively. For ATM calls the BS-values are 0.20 DM (0.5%) higher than the
LID-values. For ITM calls with a long maturity the mean IJD-value exceeds the
mean BS-value, but the percentage difference is negligible. This deviation
pattern contradicts those reported in Tables 1 and 2 when the return distribution
is positively skewed. The answer to this puzzle reads as follows: the call values
in the period from November 1987 to January 1988 and November 1989 to
January 1990 are based on 30 (5x6) different sets of parameter estimates.
Unfortunately, some sets of parameter estimates imply a positively skewed
return distribution while other sets result in a negatively skewed return
distribution.

Figure 3 shows the mean differences (in DM) between LJ/D-values and SJD-
values (for R=3) for different money ratios in the post-crash period. The SJD-
values substantially exceed the corresponding IJD-values."! According to the
findings in the foregoing section, the ‘drifi effect’ leads to extremely high SID-
values when the underlying return distributions are symmetric, or negatively
skewed, while the opposite is true for return distributions with positive
skewness. The observed pattern is therefore comsistent with symmetric or
negatively skewed return distributions. In contrast to Figure 2, the estimated
positive skewness of some of the five underlyings does not influence the
expected result. The differences between BS-values and SJD-values are therefore
larger than the differences between BS-values and IfD-values, with one
exception. Thus, in the case of OTM calls with a short maturity, the IID-value
exceeds the SJD-value and therefore reduces the deviation from the BS-value.
This effect is due to the ‘discounting effect’ as explained in the previous section.
On average, the SJD-value is 0.66 DM (5.08%) higher than the BS-value. The
percentage difference is 11.39% for OTM calls while for ATM and ITM options
the differences are (mly 1.70% and 0.60%, respectively.

Recall that the pum-caﬂ parity guarantees that the differences between the BS-
value and alternative values for a European call are the same as for an otherwise
identical European put. But even if the American puts examined were to be of a
European type, we could not expect the same deviation pattern with respect to
S/K unless for each call there is an otherwise identical put (and conversely) in
the sample. wathelesg the deviations are very similar and are therefore not
presented here.!”

" The differences are much smaller for R=1, that is, for a representative investor with
logarithmic utility function (figures are not presented here).

¥ More detailed empirical resuits for calls, as well as for puts, can be found in
Trautmann/Beinert (1995).
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4, Jump risk implicit in option prices

We now estimate the implicit process parameters by setting observed option
prices equal to STD-values to examine whether stock price jumps were expected
by market participants. The subperiods of special interest are therefore the
periods before, and after, the market crashes in October 1987 and in October
1989, respectively. Recall that according to the SJD-model a perceived risk of a
market crash implies a negatively skewed return distribution which will lead to
higher prices for OTM puts and lower prices for OTM calls compared to a
symmetric model like the BS-model. Therefore, the parameter estimates, that
are implicit in calls and puts according to the SJD-model, give direct effect to
market participanis’ crash fears or hopes of a trend reversion. This is the main
advantage of the SJD-model compared to alternative models based on symmetric
return distributions, as in the case of the BS-model. Jump intensity, jump size,
and risk aversion implicit in option prices, determined in accordance with the
SJD-model, are reported below.

4.1 Data and estimation

The calculation of SJD-model values reported in the preceding section required
cither, the seven parameters o, A, oy Oy, Orw, Orw, and oyws of the frue stock
price distribution and frue wealth distribution, respectively, as well as the risk
aversion‘ parameter R; or, the four parameters o, oy, k*= exp{oy;— R orws} and
A= A exp{-R ogw+ (1/2) R (1+R) o’} characterizing the distribution of the
risk-neutral terminal stock price. To get parameter estimates of the true
distribution a two step procedure is used. First, the parameters of the risk-neutral
return distribution are inferred from observed option prices. Second, these
estimates of the risk-neutral distribution serve as starting points in inferring the
parameters of the true distribution.

The parameters corresponding to the true, or risk-neutral, return distribution
are estimated via nonlinear least squares'®. We minimize

2
14
2 [Cf ﬁgm(g KTy R, “aAaUJ»NJ,UJ,waﬂJ,W)] ; Q)
J=1

where C; denotes the market price of call j=1,..., n. This minimization is done
for every nadmg day during the observation penod This procedure needs at
least four price observations. Since this condition is not always fulfilled for the

s We used the FORTRAN routine BCLSF available in the IMSL program library.
7 Since nonlinear least squares do not converge in all cases, we used four different
parameter vectors as starting values in order to arrive at the global minimum.
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FOM-sample, the corresponding price observations of up to four trading days
preceding the trading day under consideration are, if necessary, also used.

4.2 Results

The following figures present the implicit jump frequency per year (JF), A, and
the implicit jump size per year (IJSY), Ak. As.long as IF is small enough,
positive and negative values for IISY imply positive and negative skewness of
the implicit return distribution indicating strong crash fears and hopes of a trend
reversion, respectively,. Figures 4 and 5 illustrate the parameter estimates
implied by the prices of Deutsche Bank calls and puts, respectively, for all
trading days in the period from July 1987 to December 1987, that is, before and
after the market crash on October 19, 1987.

Figure 4 highlights the crash fears in July 1987, confirming the findings of
Bates (1991) when examining the implicit distribution of the S&P 500 fotures
price. The IJSY is quite large while the IIF is relatively small. Therefore the
market participants expected a jump with a large negative amplitude (i. €., a
market crash). In contrast to the findings of Bates for the US market, German
call market participants also expected a crash at the beginning of October 1987.
But immediately before the crash on October 1987, crash fears were not strong,
since the implicit jump frequency was too high. While the crash fears reflected
by the S&P 500 futures option prices returned after the stock market crashed,
German option market participants did not expect a further stock price drop.
Surprisingly, the IJSY and IJF implicit in call prices indicated an upward stock
price correction. The graphs evince this dramatic change in implicit stock price
distributions after the crash. The different time series of skewness in return
distributions implicit in US and German option prices can be explained by the
corresponding historical stock price and index price movement. While the US
market peaked in August 1987 after a dramatic upward movement during the
preceding twelve months, the German stock market peaked already in December
1985 and declined during the years 1986 and 1987. The October 1987 crash left
the US stock market at the end of the year at essentially the same level as in
January 1987, while the German market fell back to its Janunary 1985 level
Therefore, while US market participants feared a further drop, the German price
level was so low that a further price drop was not expected by the options
market participants.

The findings for the implicit parameters of the calls are not identical to those
of the puts. Figure 5 shows this difference. First of all, the crash fears in July
1987 are insignificant. Furthermore, since the IJF is low immediately after the
crash in October 1987 the parameters implicit in puts mainly reflect rebound
hopes. Figure 6 depicts the estimated risk aversion parameter implicit in
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Deutsche Bank calls. The average value of the implicit risk aversion parameter
R is 9.6, indicating that the risk aversion of the representative investor was
relatively high. Evidently, the October 1987 crash did not have a substantial
influence on the implicit risk aversion. The same is true for Deutsche Bank puts.
With an average value of 10.9, the risk aversion is even higher.

Figure 7 shows the differences in root mean squared errors (RMSE) between
the BS-model and SID-model (upper scale) for the pooled sample of Deutsche
Bank calls and puts. The lower scale of Figure 7 shows the difference in RMSE
when the parameter estimation is based on the pooled sample and when the
parameters are separately estimated for calls and puts, respectively. The sample’
period starts in April 1987 and ends in December 1987. The observed root mean
squared errors are quite large. This is obviously due to the fact that (1) all
transaction prices of one day are used to estimate the implicit parameters, and
because (2) price data for this period are not time-stamped. Unfortunately, most
of the time the SJD-model does not yield a substantially better fit of the market
prices compared to the BS-model. Nonetheless, the SID-model fits the data
much better than does the BS-model afier the October 1987 crash. The
difference between the parameter estimates implicit in Deutsche Bank calls and
‘the parameter estimates implicit in Deutsche Bank puts (compare Figures 4 and
5) is reflected in the increase of the RMSE between late August 1987 and
October 1987.
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Figure 4: Jump frequency and jump size per year implicit in Deutsche Bank calls
observed between April and December in the market crash year 1987
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Figure §: Jump frequency and jump size per year implicit in Deutsche Bank puts
observed between April and December in the market crash year 1987
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Figure 6: Risk aversion implicit in Deutsche Bank calls observed between April and
December in the market crash year 1987

319



320

=%

0.5 —

0.0
~0.5

1.0 —

870401 870701 871001 880101 882101 280731
: TIME :

Figure 7: Differences in RMSE as % of the stock price for Deutsche Bank
Upper scale: RMSE (BS-model) minus RMSE (SID-model) for calls
and puts pooled
Lower scale: RMSE (8JD-model calls and puts pooled)
minus RMSE(SJD-model unpooled)

5. Conclusions

In conclusion, we list several contributions of this study. In the first place, we
have presented a detailed analysis of the impact of stock price jumps on option
values for representative model parameters. The shapes of the risk-neutral
return distributions plotted in Table 2 help to explain the deviation of the Jump
diffusion values from the BS-values. While the economic rationale behind the
difference between SJD-value and IJD-value relies on the interaction between
the drift and discounting effect, the interaction between the volatility and
skewness effect explains the difference between BS-values and SID-values.

In the second place, we have examined the historical impact of jumps on
opfion values. In the case of options written on 30 NYSE listed common stocks,
Ball/Torous (1985) find no operationally significant differences between BS-
value and IJD-value, although statistically significant Jjumps were present in the
underlying stock returns. In their sample, the mean percentage deviation for
OTM calls is only 2.98%. In contrast to their result, we find a more substantial
historical stock price impact. When using the IJD-model in the post-crash period
from November 1987 to January 1988, and from November 1989 to January
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1990, we find a mean percentage difference between the BS-model and the 1[JD-
model of 6.3% for OTM calls (and —-0.81% and 0.19% for ATM calls and ITM
calls, respectively). Moreover, the mean percentage difference between the SJD-
value (for A=3) and the Black/Scholes value is 7.62% for long-term calls in
general and even 11.39% for OTM calls, respectively.

In the third place, we have inferred the jump intensity, jump size, and risk
aversion zmp!wzt in option prices that were quoted before and after market
crashes. The time pattern of the implied jump size per year suggests that the
market participants feared a stock market crash in July 1987, thus confirming
the findings of Bates (1991) for the US market. However, in contrast to Bates,
the implicit parameters also suggest crash fears at the beginning of October -
1987 and hopes of a stock market rebound after the market crash. Finally,
consistent with the findings of Bates (1991), the fit of the SJD-values to the
option prices before the October 1987 crash is not significantly better than that
of the BS-values (as depicted by the differences in RMSE), while after the
October 1987 crash the RMSE for the SJD-model is significantly smaller.
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