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Abstract

A reasonable requirement for a performance measure is that the performance measu-
red can be split up in a timing and a selectivity component. Unfortunately, members
of the class of admissible performance measures violate in general this requirement.
But there is at least one exception: a member of the class of positive admissible
performance measures which we call exponential performance measure. This mea-
sure assumes that the uninformed investor possesses an exponential utility function

exhibiting constant absolute risk aversion.

Using a local market model we show how timing and selectivity affect performance.
We can express analytically the dependence of performance on timing and selectivity
for a quadratic and an exponential utility function. This enables us to isolate timing
and selectivity relying only on return data. This external performance attribution
contrasts with the internal performance attribution which uses in addition portfolio
weight information. Since timing and selectivity cause deviations from the passive
strategy, performance can be compared with the risk of a passive strategy. This

allows a ranking of mutual fund performance.

Return data of 17 German mutual funds from 1975 to 1994 indicate that in the past
German mutual fund portfolio managers were good stock pickers and not that good

market timers.



1 Introduction

Traditional performance measurement assumes (1) a buy and hold-strategy imp-
lying a constant portfolio beta and (2) an efficient market index to compute the
appropriate betas. Performance measures like Jensen’s (1968) alpha or Treynor’s
(1965) reward to volatility ratio compare the characteristic line of a portfolio with
a passive strategy that consists of fixed fractions of the investor’s funds invested in
the market proxy and the risk free asset. The characteristic line results from the
linear regression of the portfolio’s excess rate of return on the excess rate of return
of the market proxy used. The slope of the line corresponds to the value of beta.
The intercept equals Jensen’s alpha. In case of market timing the portfolio manager
adjusts the portfolio’s composition and consequently the portfolio beta to anticipa-
ted market movements. A positive correlation between portfolio beta and market
excess rate of return yields an alpha which is biased downwards. Furthermore, an
inefficient market proxy may lead to alphas which are biased upwards as well as

downwards.

Grinblatt and Titman (1989) were the first to propose a performance measure that
assigns positive performance to portfolio managers with timing abilities. Their posi-
tive period weighting measure has the same data requirements as Jensen’s alpha but
identifies correctly informed investors as positive performers. Glosten and Jagan-
nathan (1994) embed the performance measurement issue in a broader framework.
They show that valuing performance is equivalent to valuing particular contingent
claims on an index portfolio. Like Grinblatt and Titman (1989), Glosten and Ja-
gannathan (1994) point out that performance measurement needs a valuation model
with positive state price densities. The latter property guarantees that the service
provided by the portfolio manager, namely creating “costlessly” a call option on
the index, has a positive value. Since in incomplete markets there are numerous
candidate price densities (or period weighting measures, to use the Grinblatt and
Titman (1989) terminology), Glosten and Jagannathan (1994) assume the existence
of an representative passive investor whose intertemporal marginal rate of substitu-

tion (IMRS) characterizes the state price density.

Chen and Knez (1996) propose an axiomatic approach to performance measurement



which parallels the axiomatic approach of arbitrage models for securities valuation.
According to that approach any admissible performance measure (APM) should sa-
tisfy four minimal conditions: it assigns zero performance to passive strategies and it
is linear, continuous, and nontrivial. Such an APM exists if and only if the securities
market obeys the law of one price. Using a positive APM (PAPM) is equivalent to
the assumption that there are no arbitrage opportunities for uninformed investors.
Each APM is uniquely representable by a so-called stochastic discount factor which
can be identified with the IMRS of Glosten and Jagannathan (1994). The per-
formance measures of Grinblatt and Titman (1989) and Glostan and Jagannathan
(1994) belong to the PAPM-class.

To assess the portfolio manager’s specific abilities (timing and selectivity) we have
to assume a return generating model for the portfolio rates of return. A reasonable
requirement for a performance measure is that the performance measured can be
split up in a timing and a selectivity component. Unfortunately, members of the
APM-class violate in general this requirement. But there is at least one exception:
a member of the PAPM-class which we will call exponential performance measure
(EPM). This measure assumes that the uninformed investor possesses an exponential

utility function exhibiting constant absolute risk aversion (CARA).

Using a local market model we show how timing and selectivity affect performance.
We can express analytically the dependence of performance on timing and selectivity
for a quadratic and an exponential utility function. This enables us to isolate timing
and selectivity relying only on return data. This so-called ezternal performance
attribution contrasts with the internal performance attribution as proposed by, e.g.,
Grinblatt and Titman (1989) and Heinkel and Stoughton (1997). Like Grinblatt
and Titman (1993), the latter paper uses in addition portfolio weight information.
Since timing and selectivity cause deviations from the passive strategy, performance
can be compared with the risk of a passive strategy. This allows a ranking of mutual

fund performance.

This paper is organized as follows: In section 2 we discuss the class of APMs. Section
3 introduces the EPM. Section 4 presents empirical results concerning timing and se-
lectivity of German mutual funds. Section 5 shows the connection between external

and internal performance measurement. Section 6 concludes with a summary.



2 Admissible Performance Measures

Assume that the securities market is incomplete and that the securities’ excess rate
of return rp is a mean-square integrable random variable on some probability space
{Q, F, Pr}. Let L? be the linear space of mean-square integrable random variables
on {Q, F,Pr}. According to Chen and Knez (1996) an admissible performance
measure (APM) is a function a(-) : L? — IR, fulfilling the following four conditions:

(C1l) Zero performance of passive strategies: Every portfolio composed according to

a passive strategy shows a zero performance.

(C2) Linearity: The performance of combined portfolios is the weighted perfor-

mance of the subportfolios.

(C3) Continuity: If the returns produced by two managed portfolios are arbitrarily

close, the performance values assigned to them will also be arbitrarily close.

(C4) Non-triviality: Single assets do not have a zero performance. If a portfolio
manager achieves an additional rate of return that can be identified with an

asset rate of return, a non-zero performance is shown.
A positive admissible performance measure (PAPM) satisfies in addition condition

(C5) Positivity: The performance measure shows a positive performance if the port-

folio manager acts on private information.

An APM exists if and only if the securities market obeys the law of one price.
A PAPM exists if and only if there are no arbitrage opportunities in the market.
Chen and Knez (1996) show that performance evaluation is generally quite arbitrary.
They prove that for each APM there is some state price density, sometimes called

stochastic discount factor, w € L?, such that a(-) has the representation
a(rp) = E(w - rp) (1)

for all excess rates of return rp € L?, where w satisfies E(w - Rp) = k € R for all

rates of return Rp.



2.1 Performance Measurement in a Local Market Model

To specify an APM we look at an investor who follows a passive strategy. From his
perspective the investor holds an efficient portfolio when splitting his funds into the
risk free asset and the tangency portfolio according to his risk aversion. The latter
needs not to be the global market portfolio. Therefore, this performance measure is

not affected by mismeasurement resulting from a misspecified market proxy.

Let z denote the fraction of the investor’s funds invested in the tangency portfolio
denoted by M, the investor’s rate of return R from a passive strategy reads as

follows:
R(z) = 2 Ry+(1—2x)-rg=x -rpm+rys (2)

With the convention

du(R)/OR
E(8u(R)/0R)’

the benchmark performance must be zero:

_ du(R)/9R .
Blw-ry) = E<E(au<R>/aR)”“M) =0 @

consistent with condition (C1).

Chen and Knez (1996) point out that an APM yields the normalized marginal utility
of an investor who buys one marginal unit of the mutual fund and sells one marginal

unit of the index portfolio. With R(y) =y rp + (z* —y) - 7 + ¢ we have:

0 u(R(y))
oy (E(Ou(R)/OR)) ‘y =0 )
du(R)/O R
= B (E(au(R)/aR) ly=0-(rr —TM>>

_ o ouR)/OR o[ oulR)/oR
- E(M(R)/@R)‘x*'”’ B E(M(R)/@R)‘x*'w '

— o(rp) =0




The following two assumptions are sufficient to represent an APM as the sum of the

selection component and a potentially biased timing component.
(A1) The portfolio excess rates of return follow the return generating process

rpe = [Bpt T+ €pt, (6)

where the excess rate of return of the benchmark r,; and the portfolio residual

ep are not correlated: Cov(rys,ep) = 0.

(A2) Portfolio beta and benchmark excess rate of return are jointly normally dis-
tributed.

Definition 1: A return generating model is called a local market model if the excess
rate of return of each portfolio considered in the model is generated according to

assumption (Al).

Definition 2: An investor is said to have timing ability if Cov(8p,ryr) > 0 given

that the excess rates of return are generated according to a local market model.

Definition 3: An investor is said to have selectivity if E(ep) > 0 given that the

excess rates of return are generated according to a local market model.

Timing ability and selectivity defined according to definitions 2 and 3 are affected
not only by the information processing ability but also by the aggressiveness of the
portfolio manager. As Heinkel and Stoughton (1997) point out, both performance
components can be thought of as the product of the manager’s information proces-
sing ability and his risk tolerance. Therefore, the total performance is in some sense
a price for the manager’s superior information and his skills in using it. It reflects
the marginal value of the mutual fund investment to the investor. But because ti-
ming ability and selectivity are affected by the manager’s aggressiveness in the same
way, the ratio of both performance components is independent of the manager’s risk

tolerance.!

1To separate measures of information quality from measures of aggressiveness, Jensen (1972),
Bhattacharya and Pfleiderer (1983), and Admati et al. (1986) use the quadratic regression approach
of Treynor and Mazuy (1966) relying only on return data. These studies model the fund manager’s
portfolio choice by utilizing the standard normally distributed signal methodology and assuming
constant absolute risk aversion of the portfolio manager. Our approach does not model the fund

manager’s portfolio choice.



Proposition 1: Assume that assumptions (A1) and (A2) hold. Then each APM

a(-) has the representation

0
()é(T‘p) = (1 + E (Ew . T‘M>> . COV(ﬁp,T‘M> + E(€p> . (7)
timing selectivity

PrOOF: With assumption (A1) an APM has the representation

a(rp) = E(w-rp) = E(w-PBp-ru) +M'E(EP>
=1
= COV(ﬁp,’w . T'M> -+ E(ﬁp) . E(w . T‘M> +E(EP>
=0

Stein’s lemma together with assumption (A2) gives

a(rp) = E( 9 (w-rM>>-COV(5p,rM>+E(eP>

87“M

= (1 +E (anw - TM)) - Cov(Bp,rar) + E(ep).

2.2 Special APMs in the Local Market Model

Grinblatt and Titman (1989) suggest a PAPM which they call the positive period
wetghting measure. The corresponding maximum likelihood estimator is defined as

follows:

a(rp) = Y w-rpr, (8)

where the so-called weights w; are subject to the constraints

T
(P1) p lim > w-ry =0,
t=1

T—o00

(P2) > we=1,

(P3)  w,>02

2TIn addition, a technical condition requires the period weights to converge sufficiently fast.



The period weight wy, t =1,...,T, times the number of observations T (T - wy) is
a realization of w. Maximizing expected utility of a passive investor yields period
weights which simply have to be normalized. A positive marginal utility ensures
positive period weights. The positive period weighting measure is positively related
to timing and/or selection abilities. But performance does not equal the sum of
timing and selectivity. However, positive period weighting measures within the

local market model assign a zero performance to single assets:
a(ri) = E(w-ri)=0;-E(w-ry)+E(g) = 0. (9)

Therefore, any passive strategy shows a zero performance. Hence, the positive period

weighting measures belong to the PAPM-class.
Jensen’s Alpha: A Non-positive APM

Jensen’s alpha turns out as a special APM for the following period weights:

wt:%'<1_;—2]]\;'(th_?M>> = G(rp)=7p—Bp-Fu=3ap. (10)
A negative selectivity is shown with excess rates of return reaching a certain level
as these returns get negative weights. Grinblatt and Titman (1989) conclude that
the linear weights fitting with Jensen’s alpha are consistent with a quadratic utility
function: ap = a®(rp). This utility function is crucial since is reflects increasing
absolute risk aversion and implies negative marginal utility. Jensen’s alpha fails to
fulfill the condition of a positive APM since the characteristic line fails to correctly

represent the option-like character of timing activities.3

3Dybvig and Ingersoll (1982) point out that for risky payoffs P the weights leading to Jensen’s

alpha give a valuation rule according to the standard capital asset pricing model:

E(w - P) E(ra)
0 Tpr,  “here w = (rv — E(rar))
P-p
= E(RP) = Ty +ﬂp . (E(RM) — Tf) where Rp = 2 .
0

This valuation rule allows arbitrage opportunities. For example, index call options with a suffi-

ciently high strike have negative prices. This is due to the non-positivity of the valuation operator.



The timing bias of Jensen’s alpha amounts to

E (aa w-rM> -Cov(Bp,ry) = —E2(§M> - Cov(Bp,Tm). (11)
Ty Oum

Cumby and Glen’s Measure: A Positive APM

Cumby and Glen (1990) were the first using a power utility function to specify the
period weights. While a positive or negative performance is correctly indicated,

usually a timing bias still exists.? Based on the power utility function
u(R) = —— - R, (12)

with constant relative risk aversion # and rate of return R(z) =1+ z - 73 + 7, the

timing bias amounts to

E (85Mw-rM> -Cov(Bp,rym) = —0- E(R(x*>'w'7“M) - Cov(Bp, ). (13)

3 The Exponential Performance Measure

Performance measures relying on the marginal utility of a passive investor parallel
asset valuation rules based on the preferences of the representative investor. For
example, Brennan (1979) derives for assets with end-of-period payoff P the valuation

rule

1
P = g 2UBOR LY (14)
1+7y E(8u(R)/8 R)

We now assume a passive investor exhibiting exponential utility with utility function
u(R) = — exp{—a-R} with CARA a. Assuming normally distributed rates of return,

the optimal passive strategy x* is computed by maximizing the certainty equivalent:

4Cumby and Glen (1990) and Grinblatt and Titman (1994) present empirical results for US
mutual funds. Wittrock (1995, pp. 311-314) and Wittrock and Steiner (1995) analyze German

mutual funds.



z* = argmax E(R(z)) — g - Var(R(z)), (15)

where R(z) = z - ryr +rp. The optimal fraction of funds invested in the tangency

portfolio is

ot = S(Z‘?. (16)

The ratio of marginal utility to expected marginal utility represents the IMRS. With
an exponential utility function and normally distributed rates of return this ratio

computes as follows:

%“(R”x* = a'eXp{_a'Tf}'eXp{_EE%;H'TM} (17)
= ()| = o ewi-or e {-5001

du(R)/OR
E(du(R)/0 R)

Therefore, a performance measure based on the state price density

w(ry) = exp {—% - (rM — @)} (18)

M

belongs to the Glosten and Jagannathan (1994) IMRS-class of performance measu-

res.

Definition 5: A PAPM based on state price density (18) is called exponential

performance measure (EPM), denoted by o (rp).

Jensen’s alpha may lead to mismeasurement since the stochastic discount factor
consistent with Jensen’s alpha is a linear approximation of the exponential stochastic
discount factor. When taking the adjusted exponential weights

-~

72 1 7 .
exp{28]\]2/(/[}-w(7“Mt) = T-exp{—%'(TMt—TM>} (19)




into consideration and developing a Taylor series at 75s, we obtain that the first part

of the series equals exactly the period weights consistent with Jensen’s alpha.’

3.1 Performance equals the Sum of Timing and Selectivity

The following proposition ensures that the EPM a®(rp) is not biased through ti-

ming.

Proposition 2: The EPM can be decomposed in an unbiased timing component and

a selectivity component:

a®(rp) = Cov(Bp,ru)+ E(ep). (21)

5In contrast to the quadratic state price density (10), the exponential state price density (18)
guarantees positive option values. Therefore, the latter assigns positive values to timing abilities.
Let C = max{M — K, 0} denote the payoff of a European call option written on a market index M
with strike K. With the convention X = M /M, and defining the index rate of return—in contrast
to Brennan (1979)—by:

2
Ry = 1nX+07M where Ruy =71y +71yf

we surprisingly get the Black—Scholes value of the end-of-period payoff C:

e -E(w(ry) - O) (20)
2
L7 K (nX = ry + %)
— e TF. My—=]- - dX
e ,_271"0'[(/( 0 X) exp 902
1 i (y—om?}
T ARy
0 N 2 p 2 Y
ﬁ.(lnMio—rf+UTM)
_ 1 T y2}
—e " K- — e =5 d
V2T / xp{ 2 v

1 K 2
E‘(lnm—r‘f"{‘%)

M, o2 M, o2
_ MO‘N<1n7(Q+rf+7> _e_rf‘K,N<1n7<Q+7”f—7>‘
ag

10



ProOF: The performance assigned to the benchmark is zero:

E(w(ry) ra) = E(exp{—%-(rﬂl_%>}.mw>

M

1 T T2 }
= — T - €xX dry = 0.
\/27r-0M/ M p{2012\4 M

—00

Therefore, the timing component is not biased:

E<anw(7“M>'7“M> = —EET%J)'P(W(TK)-TM)J:
=0

O

Passive investors follow a buy and hold-strategy that keeps the portfolio composition
unchanged. The performance of passive strategies is zero. Timing abilities resemble
options since perfect timing achieves the maximum from the market return and the
risk free asset return. Merton (1981) points out that in this case portfolio payoffs
are identical to a portfolio that combines index calls with the risk free asset. A buy
and hold-strategy cannot duplicate the index option due to the lack of continuous
portfolio changes. Thus, the evaluation is done as if the market is complete. This

is achieved with an assumption on preferences.

We now like to show why the EPM decomposes simply in a timing and a selectivity
component. Recall that the state price density w(ras) might be identified with the
IMRS of a representative investor. Furthermore, the marginal rate of return from a
passive strategy corresponds to the excess rate of return of the tangency portfolio.

The timing bias is zero:

9 ~ & Ou(R)OR OR
E(aer(rm'rM) - E(arM \E(M(R)/@R)}’@/) - (22)
—uw(ry)
E( 5 du(R)JOR OR IR
?R E(au(R)/aR)J w 396) z*
- _q. duRr)yoR =
E(ou(r)/o R)
a-x* 0
- s B ().

-~

=0
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CARA implies that the second derivative of the exponential utility function is pro-
portional to the first derivative. Therefore, the major benefit of the EPM is due to
the CARA property.

3.2 External Performance Attribution

The EPM allows to isolate the timing component and the selectivity component

relying only on return data.

Definition 5: Isolating the timing component from the selectivity component using

only return data is called external performance attribution.

Proposition 3: Assume that an uninformed investor exhibits CARA. Then the
timing component of the performance is proportional to the difference of the EPM
a®(rp) and Jensen’s alpha a®™(rp) given by:

2

Cov(Bp,rm) = (a®(rp)—a®(rp)) - EQO(-];'/IM>‘ (23)

The selectivity component of the performance computes as follows:

2
Om

E(e = a®(rp) — (™ (rp) — a®(rp)) - . 24
(ep) (rp) = (@ (rp) (rp)) 2 (ryr) (24)
Proor: The EPM and Jensen’s alpha have the representation:
a®(rp) = Cov(Bp,rum)+ E(ep);
qu EQ(TM )
oM (rp) = (1-—=3 - Cov(Bp,rm) + E(ep).
Om
Therefore, we can isolate the timing component and the selectivity component:
Cov(Bp,rm) = (a™(rp) — a®(rp)) i
Py, "M - P P EQ(’I"M>
= E(p) = a®(rp) — (a™(rp) — a®(rp)) Gl
P P P P)) g2 (o)’
O
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Like Jensen’s alpha, most APMs do not allow a ranking of mutual fund performance.
In this manner, a second mutual fund with a higher performance might exist that
requires a higher average portfolio beta. The average portfolio beta can be computed
without knowing the portfolio composition and can further be used to adjust the

obtained performance.

Proposition 4: The EPM divided by the average beta

E(rp) — a®(rp)

E(6P> = E(T‘M>

(25)
allows a ranking of mutual fund performance. We call the ratio of expected fund

excess rate of return divided by the average beta the Treynor ratio with average beta.

ProoF: When using the EPM, the expected portfolio rate of return can be decom-

posed as follows:

E(rp) = P(ﬁp) . E(TMZ +gOV(,6p,T'MZ+ E(ep)
benchmark return tinﬁng selectivity

= E(Bp)-E(ry) + o™ (rp)

benchmark return  performance

Dividing by E(8p) yields:

O

With positive performance and positive average portfolio beta, the obtained mutual
fund excess rate of return per unit of average systematic risk exceeds the one of
a passive strategy. The higher the difference the more benefitial is the portfolio

management to the investor.

13



As mentioned above, the performance measured by the EPM is proportional to
the risk tolerance of the portfolio manager. In the standard exponential-normal
framework of portfolio choice all portfolio weights are proportional to the manager’s
risk tolerance. Since the portfolio beta ist the weighted sum of asset betas, the

manager’s risk tolerance has an identical impact on the average portfolio beta.

Therefore, the Treynor ratio with average beta is independent from the manager’s
risk tolerance. Consequently, mutual fund performance measured by the EPM and
divided by the average beta allows a ranking of the information processing abilities of
the portfolio managers. Therefore, we are able to isolate their information processing

abilities without knowing the managers’ risk tolerances.

4 Empirical Performance Estimates

4.1 Data

The analysis is based on monthly return data of 17 German equity mutual funds
from 1975 to 1994.° The computed rates of return assume that after-tax payouts
are reinvested in the mutal fund.” The risk free interest rate is assumed to be the
1-month FIBOR or the 1-month money market rate, respectively; we used DAFOX,
CDAX, and DAX returns as proxies of market returns. While the first two market
proxies include all listed stocks at the Frankfurt stock exchange the DAX includes

30 German blue chips that represent 75 % of the German stock transactions.

6Recently, the number of mutual funds has substantially increased but a complete time series
exists only for these mutual funds. According to Brown et al. (1992) empirical analysis is distorted
by a survivorship bias resulting from defaulted mutual funds. This effect does not apply here since

the only mutual fund that disappeared was subject to reconstruction—not default.
In all tables and figures rates of return are annualized based on discretely compounded rates

of return.

14



The backwards calculation of the DAFOX for the time before its introduction differs
from the one for the CDAX and the DAX because those are connected with the
Hardy index and the index of the ‘Borsenzeitung’, respectively. Therefore, the

DAFOX which was created for empirical research is closest to the market portfolio.®

4.2 Traditional Performance Measurement

Table 1 presents the results of traditional performance measurement based on Jen-
sen’s alpha and Treynor’s ratio where the degree of diversification equals the coeffi-

cient of determination R2.

Although all mutual funds considered here earned a positive risk premium, the
average performance is nearly zero (—0.08 %) when using the DAFOX as the bench-
mark. When using the CDAX as market proxy, both alphas and betas of all mutual
funds increase. When using the DAX Jensen’s alphas are substantially higher while

betas are lower. This leads to higher Treynor ratios.

8See Goppl and Schiitz (1992). Mutual fund price data were provided by the ‘BVI Bundesver-
band Deutsche Investment-Gesellschaften e.V.” DAFOX quotations and CDAX quotations came
from the ‘Karlsruher Kapitalmarktdatenbank’. DAX quotations were available from the ‘Deutschen
Bérse AG’. Money market rates are taken from the monthly reports of the ‘Deutsche Bundesbank’.

We thank all involved persons for making their data available.
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4.3 Exponential Performance Measurement

When using the EPM instead of Jensen’s alpha we find nearly the same funds
performance. As shown in table 2, the performance compared with Jensen’s alpha
decreases by a few basis points. At the same time, we achieve average betas slightly
higher than those of the characteristic line. From this we can infer a negative timing
component. The timing bias in Jensen’s alpha for this sample is relatively small.
But timing may still be a significant performance component. Only the comparison
of the EPM with Jensen’s alpha using proposition 3 allows to isolate the timing

component.

A test for statistical significance of the estimated performance may proceed as fol-
lows. Under the hypothesis that there is neither selectivity nor timing, the expected

performance is zero:

a(rp) = E(w-rp)=0p -E(w-ry)+E(w-ep)=0. (26)

The variance of the estimator is

2 (0™(rp)) = Blw-ep) —EX(w-ep) = Bu?) - oX(er);  (27)
S (@) = exp{%}.a2<ep>.

We assume that the estimator for the EPM is asymptotically normally distributed.®
Therefore, in table 2 the significance of the observed performance is tested by a
t-test. Due to the slightly lower performance and the higher standard errors com-
pared to Jensen’s alpha, the number of mutual funds with a statistically significant

performance is lower.!?

®Dybvig and Ross (1985) showed that portfolio rates of return may not be normally distributed
if the portfolio manager possesses superior information even though the manager and the investor
both face normal rates of return. This is due to the fact that portfolio rates of return are a product
of portfolio choices and asset rates of return, both being functions of the normally distributed signal
observed by the portfolio manager.

19For Jensen’s alpha we have: o2(@p) = (1+7%,/0%;) - o (ep).
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Roll’s (1978) critique of the CAPM focuses on the ambiguity of performance mea-
surement that results from an inefficient market proxy. The EPM is based on a
local market model. Therefore, this critique does not apply here. Nonetheless, the
local market model assumes a locally efficient market proxy. Therefore, performance
measurement depends on the employed market proxy. Performance rankings accor-
ding to Treynor’s ratio with average beta provide the following picture: Performance
measurement with the DAFOX and CDAX leads to a nearly identical performance
ranking. However, using the DAX causes changes in the ranking. Nonetheless, the
Spearman rank correlation coefficients are very high. All probabilities of falsely

rejecting the null-hypothesis that the rankings are uncorrelated are below 1%.

Clearly, the estimated performance depends on the benchmark used. The average
performance increases by 106 basis points and 162 basis points per year using the
CDAX and the DAX, respectively, instead of the DAFOX. But figures 1 to 3 visualize

the insensitivity of the mutual funds’s ranking with respect to the market proxies

chosen.
Figure 1: Treynor’s Ratio with Average Beta (1975-1994)
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Figure 2: Treynor’s Ratio with Average Beta (1975-1994)
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Figure 3: Treynor’s Ratio with Average Beta (1975-1994)
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4.4 Performance Attribution

Performance attribution decomposes mutual fund performance in a timing compo-
nent and a selectivity component. As mentioned above, we know from the com-
parison of tables 1 and 2 that the lower performance estimates according to the
EPM (compared with Jensen’s alpha) express negative timing components. This is

compensated by positive selectivity except for two funds when using the DAFOX.

Table 3 shows that this result is independent from the market proxy chosen.

Table 3: Performance Attribution (1975-1994)

Index DAFOX CDAX DAX
No. Selectivity ‘ Timing | Selectivity ‘ Timing | Selectivity ‘ Timing
1 1.18% -1.27% 2.29% -1.15% 2.52% —-0.77%
2 1.35% -1.39% 2.29% -1.27% 2.58% —-0.98%
3 0.56 % -1.32% 1.67% -1.19% 1.94% -0.81%
4 —-027% | —0.97% 0.55% -0.92% 0.69% -0.62%
5 0.93% —-1.18% 1.87% -1.07% 2.08% -0.72%
6 0.01% -1.23% 1.18% -1.12% 1.43% -0.72%
7 1.70% -1.21% 2.79% -1.11% 2.98% —-0.70%
8 1.90% —-1.08% 2.67% —-0.99% 2.88% —-0.68%
9 0.95% -1.25% 2.03% -1.15% 2.26 % -0.76 %
10 1.74% -1.11% 2.80% -1.00% 3.00% -0.63%
11 2.65% —-0.94% 3.57% —-0.90% 3.711% -0.55%
12 047% -1.16% 1.40% -1.06% 1.61% —-0.74%
13 —047% | —1.55% 0.38% —-1.45% 0.51% -1.04%
14 1.52% -0.57% 2.48% -0.55% 2.75% —0.26%
15 1.14% -1.17% 2.23% -1.09% 2.41% -0.71%
16 0.36 % -1.35% 1.34 % -1.23% 1.59% —-0.87%
17 1.22% -1.07% 1.83% —-0.98% 1.95% -0.72%
Average 1.00% -1.17% 1.96 % -1.07% 2.17% -0.72%

With respect to the DAFOX, we find an average performance of 1.00% per year
resulting from stock picking while poor timing overcompensated selectivity. The
results are different using another proxy. The average selectivity increases and the
negative timing component decreases when the whole analysis is based on the CDAX.

The same result holds when using the DAX as market proxy. The index sensitivity
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becomes more evident when looking at figures 4 to 6. The relative positions of the

mutual funds do not change very much.

Figure 4: Timing and Selectivity (1975-1994)
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Figure 5: Timing and Selectivity (1975-1994)
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Figure 6: Timing and Selectivity (1975-1994)
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4.5 Persistence of Performance

Finally, we look at the persistence of performance. We split the 20-year-sample
period into two subperiods: from 1975 to 1984 and from 1985 to 1994. Table 4

presents the results.

In the first period from 1975 to 1984 the mutual funds achieved a small but positive
timing component. Simultaneously, the majority of the mutual funds showed a ne-
gative selectivity that in most cases causes a negative total performance. However,
this does not apply to the second period. With six exceptions the mutual funds
showed positive selectivity but all of them obtained negative timing components.
It is conceivable that the crashes in 1987 and 1990 are responsible for the nega-
tive timing components in the second subperiod. Careful transactions might have

triggered that the mutual funds did not participate at increasing prices to the peak.
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Figures 7 and 8 show the components of timing and selectivity in mutual fund

performance for both subperiods.

Figure 7: Timing and Selectivity (1975-1984)
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Figure 8: Timing and Selectivity (1985-1994)
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Persistence of performance is important for an investor who decides to invest in a
mutual fund because of its past performance. Usually, two procedures are used to
test whether a mutual fund with positive or negative performance, respectively, in

the first period belongs to the same class in the second period:

1) The ranking can be used for a rank correlation test. Therefore, Treynor’s ratio
with average beta has to be computed. Using the data shown in table 4 the
Spearman rank correlation coefficient is —0.3382. At a confidence level of 10 %

the hypothesis that the rankings are uncorrelated cannot be refused.

Figure 9: Performance (1975-1984 and 1985-1994)
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2) Regression of the performance of the second period on the performance of the first

period shows a negative correlation. The slope of the dotted regression line shown
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in figure 9 is not different from zero at a confidence level of 10 %. Therefore, we

cannot claim that previous performance affects future performance.

Our sample does not show persistence of performance.!! The mutual fund with the
highest performance in the first subperiod (no. 2) obtained the lowest performance
in the second subperiod whereas the mutual fund with the second lowest performance

in the first period (no. 14) achieved the best performance in the second period.

5 External Versus Internal
Performance Attribution
For positive period weighting measures within the local market model, according to

assumption (Al) a benchmark has to be provided that is an efficient combination of

assets ¢ = 1,..., N. Therefore, the following return generating process is assumed:
rie = Bi-rme+er; i=1,...,N; t=1,...,T.

Let x; denote the fraction of the portfolio invested in asset ¢ at time ¢. The total

period portfolio excess rate of return is

1 T 1 1 T N
rp = T-;Tpt=T'szit'rit=T'szit'(5i'7“Mt+€it>- (28>

t=1 i=1 t=1 i=1

Knowing the composition of the portfolio allows to compute the respective portfolio
beta and portfolio residual. By that it is possible to quantify the portfolio manager’s

ability of timing and selectivity. At time ¢, we get for the beta and the residual:

N N
ﬁpt = Z Tt * ﬁz und €Epy = Z Tt * €. (29>
i=1 i=1

1 Qur result is in accordance with empirical results based on traditional performance measures.
Grinblatt and Titman (1992) find no persistence in performance of US mutual funds. Wittrock
(1995, pp. 451-460) finds no persistence for German mutual funds. Recent studies find little
persistence in the ranking of mutual fund performance for US mutual funds, see, for example,
Gruber (1996).
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We stress the interdependence of external and internal performance measurement

with the following

PROPOSITION 5: Assume that the local market model holds. Then the performance
consisting of timing and selectivity equals the sum of covariances between portfolio

weight and rate of return, i.e. the Grinblatt and Titman (1993) internal performance

measure:
——— N ———
Cov(Bp, M)+  €p = ZCov(xi,ri) : (30)
timing selectivity G

internal performance measure

Furthermore, the Grinblatt and Titman (1993) internal performance measure uses

a passive strateqy with average portfolio weights as a benchmark:

N
Z@(mi,ri) = Tp— BP Ty . (31)
=1

benchmark return

internal performance measure

PRrROOF:

—

OV(ﬁp, T‘M> -+ /6\p

: Z ((51% - BP) “Tymt T EPt)

t=1

Q

Tp—0BpTu =

N =

I
H!H
]+

AN

N
int'(ﬁi'TMt'i‘Eit)) _BP'?M

N
= Z Cov(z;,73)-
=1
O

The sum of covariances between portfolio fractions of single assets and their excess
rates of return represents the internal performance measure of Grinblatt and Titman

(1993). This sum of covariances can be used as a performance measure since it
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assigns zero performance to a passive strategy with unchanged portfolio weights.!?
This performance measure is quite intuitive. If the portfolio manager correctly
anticipates price movements, the change of portfolio weights is directly related to
price changes. This gives a positive covariance of portfolio weight and rate of return

of the corresponding asset.

An inefficient market proxy leads to deviations from the local market model, i.e. an
alpha different from zero. The inefficient market proxy is denoted by I. We assume

a one-factor model as return generating process for asset excess rates of return:

T = Oéi-i-ﬁi'T']t-i-Eit; Z=1,,N, t=1,...,T. (32>
N
With ap = Z Z; - a; this gives the following rate of return decomposition:
i=1
Fp = Bp-7r 4+ ap +Cov(Be,r)+ € . (33)
benchmark return  allocation timing selectivity

-~

N ————
Z Cov(z;, ;)
=1

Thus, the internal performance measure is not able to cover the component of the
portfolio excess rate of return resulting from the alphas. Moreover, it measures the
sum of timing component related to the inefficient benchmark and selectivity which
summarizes above average and below average rates of return of single assets. In
addition to the result of Heinkel and Stoughton (1997) this emphasizes that the

internal performance measure depends on a benchmark.

The allocation component results from the average portfolio fractions. It gives the

component of the portfolio excess rate of return by which the average strategy

12The covariance Cov(z;, ;) = Cov(z; — E(z;),;) represents the continuous performance mea-
sure of Heinkel and Stoughton (1997). It compares deviations from the average portfolio fraction
of a asset with its respective rates of return. However, the internal performance measure of Grin-
blatt and Titman (1993) uses the changes of the portfolio fraction: Cov(x; — Zi¢—1,7i). Both
performance measures are identical if current rate of return and portfolio fraction of the last period
are uncorrelated. The similar performance measure of Cornell (1979) does not focus on changes of

the portfolio fraction but on above average or below average rates of return.
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exceeds the passive strategy. This component of the portfolio rate of return belongs
to the portfolio manager’s ability of diversification given an inefficient benchmark.

Thus, the allocation component is part of the performance.

This fundamental aspect remains true even when assuming a linear multi-factor
model which can be justified taking an arbitrage free market into consideration.
Here, the timing component corresponds to the covariances of factor sensitivities and
systematic risk factors. The representation of selectivity and allocation components
does not change. This means that internal performance measurement for this class
of return generating processes does not consider the allocation component whereas
the EPM does.

6 Summary

Traditional performance measurement is mainly criticized on two grounds: Firstly,
an inefficient benchmark may lead to mismeasurement of mutual fund performance
as single assets even in capital market equilibrium may show positive as well as
negative alphas. In this situation, it is not clear whether the performance is caused
by portfolio management or by inefficiency of the benchmark. Secondly, perfor-
mance measurement based on the characteristic line requires a constant portfolio
beta. Rearranging the portfolio composition on timing signals causes changes in the

portfolio beta which subsequently lead to a bias in performance measurement.

Members of the PAPM-class overcome these weaknesses but usually have the disad-
vantage of a timing bias. The EPM proposed in this paper avoids this disadvantage.
We can completely eliminate the timing bias with the EPM. The comparison with
Jensen’s alpha enables us to isolate timing and selectivity. By adjusting with the
average portfolio beta a performance ratio can be computed that allows a consistent
ranking of mutual fund performance. This ratio is independent from the portfolio

manager’s risk tolerance.

Our empirical study on German mutual fund performance using the EPM leads
to the following main results: Firstly, index sensitivity affects performance measu-

rement. We have found that the broader the market proxy the lower is the per-
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formance. However, the performance ranking is not very sensitive with respect to
market proxy choice. Secondly, performance attribution showed positive selectivity
and negative timing for the period from 1975 to 1994. But the results depend on

the analyzed time period. Previous performance does not allow a forecast.

Finally, within the local market model we showed that the EPM and external per-
formance attribution, respectively, give the same information on the portfolio ma-
nager’s abilities as internal performance measurement. The latter does not only rely

on return data but also on information on portfolio weights.
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