Local Expected Shortfall-Hedging in Discrete Time

by

Marco Schulmerich & Siegfried Trautmann

Barra International Ltd., Frankfurt a. M.

CoFaR Center of Finance and Risk Management

Outline:

- 1. Introduction
- 2. Model Framework
- 3. Hedging approaches
- 4. Expected Shortfall-Hedging
- 5. Local Expected Shortfall-Hedging
- 6. Conclusions

1. Introduction

- Let us assume a situation where an investor has written a European call option on a stock, say for a price of $10 \in$.
- Suppose that the market is incomplete and that the investor is unwilling to follow a superhedging strategy which requires very often to buy one unit of the underlying instrument for, say 100 €.
- Question: What is the optimal self-financing hedging strategy under a constraint on the initial hedging capital?
- Föllmer/Leukert (2000) propose a self-financing hedging strategy which minimizes the **expec**ted shortfall in a Black/Scholes (1973) model. This approach is in the spirit of the martingale approach of portfolio optimization.

Hedging Object: Short position of a European call with exercise price K, expiration date T, terminal value $F_T = (S_T - K)^+$, and present value F_0 .

• Föllmer/Leukert (2000): Minimizing the investor's expected shortfall under a budget constraint is in the Black/Scholes model tantamount to (super-) hedge a suitable gap option ("modified claim").

• Question: Why should an investor not follow a replication strategy if the market is frictionless and complete? (Risk-averse investors would generally follow a perfect hedging strategy in a complete markets setting like the one assumed by Föllmer/Leukert (2000)).

2. Model Framework

We assume a situation where an investor has written a European contingent claim on a stock and wants to hedge the occurring risk with a fixed but arbitrary initial hedging capital V_0 .

- Hedging Object: Short position of a European contingent claim F_T .
- Hedging Instruments:
 - Underlying stock $S = (S_0, S_1, \dots, S_T)$ and
 - riskless money market account $B_t = (1+r)^t$, $t = 0, 1, \dots, T$.
- Hedging Strategies: To hedge the contingent claim the investor chooses a strategy $H = (h, h^0)$ where $h_t(h_t^0)$ represents the quantity of the stock (money market account) held in the portfolio at time t.

The value of a hedging strategy is $V_t(H) = h_t \cdot S_t + h_t^0 \cdot B_t$.

The set of all self-financing strategies is denoted by $\mathcal{H}_{\mathbf{S}}$.

3. Hedging Approaches

Risk measures:

- Two-sided risk measures
 - Variance
 - Standard deviation
- One-sided risk measures (Shortfall risk measures)
 - Shortfall Probability, Value-at-Risk (not a coherent risk measure, → Quantile Hedging)
 - Expected Shortfall (an "almost" coherent risk measure)

Motivation for shortfall-based hedging approaches:

- In complete markets: hedger is not willing to invest completely the proceeds from writing the option.
- In incomplete markets: hedger is not willing or able to finance a superhedging strategy.

	Complete Markets	Incomplete Markets	
No	Delta-Hedging:	Superhedging:	
Shortfall	Black/Merton/Scholes (1973)	El Karoui/Quenez (1995)	No
Risk	Cox/Ross/Rubinstein (1979)	Naik/Uppal (1992)	Restriction
		Local Risk-Hedging:	
		Föllmer/Schweizer (1991)	Hedging
		Schweizer (1992)	Capital
Shortfall	Global Variance-Hedging:		
Risk	Shortfall Probability-Hedg	Restriction	
	Föllmer/Leuk	on Initial	
	Global Expected Shortfall-	Hedging	
	Föllmer/Leukert (2000), C	Capital	
	Cvitanić (1998), Schulmer		
	Schulmerich(2001)		
	Local Expected Shortfall-I		
	Schulmerich/Trautmann (2		

Hedging in the trinomial model: A graphical illustration

Superhedging in the trinomial model: A graphical illustration

4. Expected-Shortfall Hedging

• **Problem ES:** Find a self-financing strategy H which minimizes

$$E_P[(F_T - V_T(H))^+]$$
 under the constraints $V_0(H) = \bar{V}_0$ and $H \in \mathcal{H}_S$.

- Solution: Föllmer/Leukert (2000), Cvitanić/Karatzas (1999), and Pham (1999) propose a two-step procedure similar to the martingale approach of portfolio optimization:
 - Step 1: Static optimization problem: (easy to solve if Q is a singleton)

$$\max_{X} E_P(X)$$
 under the constraints $\sup_{Q \in \mathcal{Q}} E_Q(X/B_T) \leq \bar{V}_0$ and $F_T \geq X$.

Step 2: Representation problem:

Superhedge the modified claim X^* calculated in step 1.

The two-step procedure for ES-hedging

Stop:

 H^{SH} is optimal

5. Local Expected Shortfall-Hedging

partition the complex overall problem ES into several one-period • Idea: We problems and minimize the expected shortfall only locally.

• Problem LES:

Let $\mathcal{G}_t = \sigma(H_1^{LES}, \dots, H_t^{LES})$ denote the σ -field generated by the LES-hedging strategy until time t. Then, find sequentially a self-financing strategy $H^{LES} = (H_1^{LES}, \dots, H_T^{LES})$ with $V_0(H^{LES}) = \bar{V}_0$ whose components H_t^{LES} minimize the (local) expected shortfall

$$E_P[(F_t^{SH} - V_t(H))^+ \mid \mathcal{F}_{t-1} \vee \mathcal{G}_{t-1}] \text{ for } t = 1, \dots, T.$$

• Solution:

Calculate ES-strategies in a one-period model n-times via the ES-algorithm!

The procedure for LES-hedging

Start
$$\longrightarrow$$
 Stop determine H_0^{LES} through one-period ES-algorithm one-period ES-algorithm

Computational complexity of ES- and LES-strategies: Number of LP's to be solved

	Number of Periods							
Number of constraints	n=2		n=3		n=4		n = 5	
in linear programs	ES	LES	ES	LES	ES	LES	ES	LES
1	1	2	1	3	1	4	1	5
2	29	12	443	20	5.881	34	97.406	53
3	1	0	1	0	1	0	1	0
≥ 4	3	0	30	0	143	0	801	0
Total	34	14	475	23	6.026	38	98.209	58

The efficient frontier of the ES- and LES-strategy Expected Shortfall vs. Initial Hedging Capital

Parameter values: initial stock price = $50 \in$; annual interest rate (r) = 5 %; annual volatility of the "normal" stock price return $(\sigma) = 20 \%$; annual expected rate of the "normal" return of the stock $(\alpha) = 15 \%$; time to maturity of the option $(\tau) = 1/12$; strike price of the option $(K) = 47 \in$; expected number of jumps $(\lambda) = 3$ per year; number of trading periods (n) = 3.

Example (LES-strategy without shortfall bound $(b = \infty)$)

Example (LES-strategy with a shortfall bound (b = 5))

Distribution of the total hedging costs $(b_c = \infty)$

Parameter values: initial stock price = \$50; annual interest rate (r) = 5%; annual volatility of the stock price return $(\sigma) = 20\%$; annual expected rate of return of the stock (α) = 15 %; time to maturity of the option (τ) = 0.25; strike price of the option (K) = \$47; expected number of jumps (λ)= 3 per year; number of trading periods (n) =10.

	Initial Hedging Capital						
	$\bar{V}_0 = 5$	$\bar{V}_0 = 4$	$\bar{V}_0 = 3$	$\bar{V}_0 = 2$	$\bar{V}_0 = 1$	$\bar{V}_0 = 0$	
Mean	4.31	4.07	3.78	3.48	3.18	2.87	
Std. Dev.	0.40	2.00	3.97	5.96	7.94	9.94	
Minimum	3.43	2.43	1.43	0.43	-0.56	-1.56	
5% Quantile	3.54	2.85	1.90	0.90	-0.10	-1.10	
50% Quantile	4.34	3.61	2.72	1.73	0.88	-0.12	
75% Quantile	4.60	3.97	2.97	1.99	1.14	0.31	
90% Quantile	4.80	4.42	4.75	4.87	4.98	5.10	
95% Quantile	4.85	5.84	8.44	10.90	13.35	15.82	
99% Quantile	4.97	13.94	23.63	33.33	43.03	52.73	
Maximum	5.00	106.95	208.58	310.22	411.86	513.50	

Distribution of the total hedging costs $(\bar{V}_0 = 2)$

Parameter values: initial stock price = \$50; annual interest rate (r) = 5%; annual volatility of the stock price return $(\sigma) = 20\%$; annual expected rate of return of the stock (α) = 15 %; time to maturity of the option (τ) = 0.25; strike price of the option (K) = \$47; expected number of jumps (λ)= 3 per year; number of trading periods (n) =10.

	Upper bound for the total hedging costs						
	$b_c = 6$	$b_c = 8$	$b_c = 10$	$b_c = 15$	$b_c = 20$	$b_c = 25$	
Mean	4.17	4.08	4.01	3.91	3.85	3.81	
Std. Dev.	2.02	2.99	3.64	4.63	5.29	5.78	
Minimum	0.59	0.44	0.44	0.44	0.44	0.44	
5% Quantile	1.31	1.00	0.95	0.90	0.90	0.90	
50% Quantile	5.42	1.97	1.94	1.82	1.78	1.78	
75% Quantile	5.98	7.95	9.16	2.71	2.14	2.09	
90% Quantile	5.98	7.95	9.97	15.00	10.82	5.40	
95% Quantile	5.98	7.95	9.97	15.00	20.00	25.00	
99% Quantile	5.98	7.95	9.97	15.00	20.00	25.00	
Maximum	6.00	8.00	10.00	15.00	20.00	25.00	

6. Conclusions

- ES-hedging is a reasonable alternative to classical approaches (superhedging, mean-variancehedging) for hedging contingent claims in *incomplete* markets.
- Calculating ES-strategies in discrete models is equivalent to the iterative solution of linear programs whose number increases exponentially with respect to the number of trading dates.
- Calculating LES-strategies in discrete models is equivalent to the iterative solution of linear programs whose number increases only *linearly* with respect to the number of trading dates.
- LES-strategies approximate ES-strategies quite accurately.
- ES and LES-hedging is flexible enough to consider additional constraints on the hedging costs.

The (discounted) Expected Shortfall of a risky position X defined through

$$\rho(X) = ESD(X) = E_P(\max(-X/B_T; 0)) \equiv E_P(X^-/B_T)$$

fulfills:

Axiom S: (Subadditivity) $\rho(X+Y) \leq \rho(X) + \rho(Y)$.

Axiom PH: (Positive homogeneity) $\rho(\alpha \cdot X) = \alpha \cdot \rho(X)$ when $\alpha \geq 0$.

Axiom M: (Monotonicity) $\rho(Y) \leq \rho(X)$ when $X \leq Y$.

but not

Axiom T: (Translation invariance) $\rho(X + \alpha \cdot B_T) = \rho(X) - \alpha$.

 $\rho(x) = ESD(X)$ fulfills instead

Axiom T': For all risky positions X and all real numbers α we have the inequality

$$-B_T^{-1} \cdot E_P(X + \alpha \cdot B_T) \le \rho(X) - \alpha. \qquad \alpha \in IR.$$