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1. Introduction

e Let us assume a situation where an investor has written a European call option on a stock,
say for a price of 10 €.

e Suppose that the market is incomplete and that the investor is unwilling to follow a superhed-

ging strategy which requires very often to buy one unit of the underlying instrument for, say
100 €.

e Question: What is the optimal self-financing hedging strategy under a constraint
on the initial hedging capital?

e Follmer/Leukert (2000) propose a self-financing hedging strategy which minimizes the expec-
ted shortfall in a Black/Scholes (1973) model. This approach is in the spirit of the martingale
approach of portfolio optimization.
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Hedging Object: Short position of a European call with exercise price K, expiration date T
terminal value Fp = (Sp — K)T, and present value Fj,.

Fr
Long Position
K St
—fr Short Position
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e Follmer/Leukert (2000): Minimizing the investor’s expected shortfall under a budget cons-

traint is in the Black/Scholes model tantamount to (super-) hedge a suitable gap option
("modified claim®).

>
T >

K S,

e Question: Why should an investor not follow a replication strategy if the market is frictionless
and complete? (Risk-averse investors would generally follow a perfect hedging strategy in a
complete markets setting like the one assumed by Follmer/Leukert (2000)).
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2. Model Framework

We assume a situation where an investor has written a European contingent claim on a stock and
wants to hedge the occuring risk with a fixed but arbitrary initial hedging capital V}.

e Hedging Object: Short position of a European contingent claim £7.

e Hedging Instruments:

- Underlying stock S = (.S, S}, ...,Sy) and

- riskless money market account B, = (1+7r)!, t=0,1,...,T.

e Hedging Strategies: To hedge the contingent claim the investor chooses a
strategy H = (h,h%) where h,(h{) represents the quantity of the stock (money market
account) held in the portfolio at time ¢.

The value of a hedging strategy is  V,(H) =h, - S, + h} - B,.
The set of all self-financing strategies is denoted by Hg.
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3. Hedging Approaches

Risk measures:

e T'wo-sided risk measures

— Variance

— Standard deviation
e One-sided risk measures (Shortfall risk measures)

— Shortfall Probability, Value-at-Risk (not a coherent risk measure, — Quantile Hedging)

— Expected Shortfall (an "almost” coherent risk measure)

Motivation for shortfall-based hedging approaches:

e In complete markets: hedger is not willing to invest completely the proceeds from writing the
option.

e In incomplete markets: hedger is not willing or able to finance a superhedging strategy.
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Complete Markets Incomplete Markets
No Delta-Hedging;: Superhedging;:
Shortfall | Black/Merton /Scholes (1973) | El Karoui/Quenez (1995) | No
Risk Cox/Ross/Rubinstein (1979) | Naik/Uppal (1992) Restriction

Local Risk-Hedging: |on Initial
Follmer /Schweizer (1991) | Hedging

Schweizer (1992) Capital
Shortfall | Global Variance-Hedging: Schweizer (1996)
Risk Shortfall Probability-Hedging: Restriction
Follmer/Leukert (1999) on Initial
Global Expected Shortfall-Hedging: Hedging

Follmer/Leukert (2000), Cvitani¢/Karatzas (1999) Capital
Cvitani¢ (1998), Schulmerich /Trautmann (2001),
Schulmerich(2001)

Local Expected Shortfall-Hedging:
Schulmerich /Trautmann (2001), Schulmerich(2001)
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Hedging in the trinomial model: A graphical illustration

Fr Value of hedge portfolio
Vp=hy - Sp+hy- Br

10 +

N\

Slope of line
equals hedge ratio
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Superhedging in the trinomial model: A graphical illustration

Fy
Value of superhedging portfolio
Vil =i Sp+ by By
10 +
Slope of line
equals hedge ratio h3!
2 of superhedging strategy

40 45 50 59 St
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4. Expected-Shortfall Hedging

e Problem ES: Find a self-financing strategy H which minimizes

Ep|[(Fp — Vp(H))*| under the constraints Vo(H) =V, and H € Hy.

e Solution: Follmer/Leukert (2000), Cvitani¢/Karatzas (1999), and Pham (1999) propose a
two-step procedure similar to the martingale approach of portfolio optimization:

Step 1: Static optimization problem: (easy to solve if Q is a singleton)

max Ep(X) under the constraints sup Eg(X/Br) <V, and Fr > X.
Qe

Step 2: Representation problem:
Superhedge the modified claim X* calculated in step 1.
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The two-step procedure for ES-hedging Xi(w,) < Fyw,)
2(W1 2(W1

Xt Xj(wy) < Fo(wy)

1,SH 1,SH
X, X

1,SH
Xl

t=20 t=1 t =2
Termination test: . _ determine X%~ Start 7 := 1
Can we finance determine the superhedgmg through LP
HSH with V,? strategy H " of X,
Yes No
set 1 =141

Stop:

H5H is optimal
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5. Local Expected Shortfall-Hedging

e Idea: We partition the complex overall problem ES into several one-period
problems and minimize the expected shortfall only locally.

e Problem LES:

Let G, = o(HEE®, ... HFES) denote the o-field generated by the LES-hedging strategy un-
til time ¢. Then, find sequentially a self-financing strategy HLES = (HEES ... HEES) with
Vo(HLES) =V, whose components HFF® minimize the (local) expected shortfall

Ep[(FPH —Vi(H)T | Fr oy VGy] for t=1,...,T.

e Solution:

Calculate ES-strategies in a one-period model n-times via the ES-algorithm!



m. schulmerich/s. trautmann local expected shortfall-hedging 13

The procedure for LES-hedging

Fy(w)
FPH () Fy(w,)
Vo FPH()
FPH()
Fy(wy)
t=20 t=1 t=2
Start Stop
determine H**® through determine H{** through

one-period ES-algorithm one-period ES-algorithm
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Computational complexity of ES- and LES-strategies: Number of LP’s to be solved

Number of Periods

Number of constraints n =2 n=23 n=4%4 n=>5
in linear programs ES LES ES LES ES LES ES LES
1 1 2 1 3 1 4 1 5!
2 29 12 443 20 5.881 34 97406 53
3 1 0 1 0 1 0 1
> 4 3 0 30 0 143 0 801

Total 34 14 475 23 6.026 38 98.209 58
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The efficient frontier of the ES- and LES-strategy
Expected Shortfall vs. Initial Hedging Capital

Parameter values: initial stock price = 50 €; annual interest rate (r) = 5 %; annual volatility of the “normal” stock price return
(0) = 20 %; annual expected rate of the “normal” return of the stock (a) = 15 %; time to maturity of the option (7) = 1/12; strike
price of the option (K) = 47 €; expected number of jumps (A) = 3 per year; number of trading periods (n) = 3.
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Example (LES-strategy without shortfall bound (b = c0))

<Vt(H)
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Example (LES-strategy with a shortfall bound (b = 5))
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Distribution of the total hedging costs (b, = 00)

Parameter values: initial stock price = $50; annual interest rate (r) = 5 %; annual volatility of the stock price return (o) = 20 %;
annual expected rate of return of the stock («) = 15 %; time to maturity of the option (7) = 0.25; strike price of the option (K) = $47;

expected number of jumps (A\)= 3 per year; number of trading periods (n) =10.

Initial Hedging Capital
Vo=5 Vy=4 V=3 V=2 V=1 V=0

Mean 4.31 4.07 3.78 3.48 3.18 2.87
Std. Dev. 0.40 2.00 3.97 5.96 7.94 9.94
Minimum 3.43 2.43 1.43 043 -0.56 -1.56

5% Quantile 3.54 2.85 1.90 0.90 -0.10 -1.10
50% Quantile 4.34 3.61 2.72 1.73 0.88  -0.12
75% Quantile 4.60 3.97 2.97 1.99 1.14 0.31
90% Quantile 4.80 4.42 4.75 4.87 4.98 5.10
95% Quantile 4.85 0.84 8.44 1090 13.35 15.82
99% Quantile 497 1394 23.63 33.33 43.03 52.73
Maximum 0.00 106.95 208.58 310.22 411.86 513.50
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Distribution of the total hedging costs (V, = 2)

Parameter values: initial stock price = $50; annual interest rate (r) = 5 %; annual volatility of the stock price return (o) = 20 %;
annual expected rate of return of the stock («) = 15 %; time to maturity of the option (7) = 0.25; strike price of the option (K) = $47;
expected number of jumps (A\)= 3 per year; number of trading periods (n) =10.

Upper bound for the total hedging costs
b,=6 b.=8 b.=10 b.=15 b.=20 b.=25

Mean 417  4.08 4.01 3.91 3.85 3.81
Std. Dev. 202 299 3.64 4.63 5.29 5.78
Minimum 0.59 0.44 0.44 0.44 0.44 0.44

5% Quantile 1.31 1.00 0.95 0.90 0.90 0.90
50% Quantile 5.42 1.97 1.94 1.82 1.78 1.78
75% Quantile  5.98  7.95 9.16 2.71 2.14 2.09
90% Quantile 5.98 7.95 9.97 15.00 10.82 .40
95% Quantile 5.98 7.95 9.97 15.00 20.00 25.00
99% Quantile 5.98 7.95 9.97 15.00 20.00 25.00
Maximum 6.00 8.00 10.00 15.00 20.00 25.00
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6. Conclusions
e ES-hedging is a reasonable alternative to classical approaches (superhedging, mean-variance-
hedging) for hedging contingent claims in incomplete markets.

e Calculating ES-strategies in discrete models is equivalent to the iterative solution of linear
programs whose number increases exponentially with respect to the number of trading dates.

e Calculating LES-strategies in discrete models is equivalent to the iterative solution of linear
programs whose number increases only linearly with respect to the number of trading dates.

o LES-strategies approximate ES-strategies quite accurately.

e IS and LES-hedging is flexible enough to consider additional constraints on the hedging costs.



m. schulmerich/s. trautmann local expected shortfall-hedging 21

The (discounted) Expected Shortfall of a risky position X defined through
p(X) = ESD(X) = Ep(max(—=X/Br;0)) = Ep(X~/Br)

fulfills:

Axiom S: (Subadditivity) p(X +Y) < p(X) + p(Y).

Axiom PH: (Positive homogeneity) p(a - X) = a - p(X) when a > 0.

Axiom M: (Monotonicity) p(Y') < p(X) when X <Y

but not

Axiom T: (Translation invariance) p(X + a - By) = p(X) — a.

p(z) = ESD(X) fulfills instead

Axiom T’: For all risky positions X and all real numbers a we have the inequality

~Bi' Ep(X+a-Bp)<p(X)—a. aclR.



