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Abstract

We examine Schweizer’s (1991) locally risk-minimizing (LRM) hedge approach for
hedging a European call in the case when the stock price follows a Poisson jump
diffusion process with lognormally distributed jump sizes. In contrast to Merton’s
(1976) hedging strategy where diffusion risk is perfectly hedged while jump risk
remains un-hedged, the locally risk-minimizing strategy hedges both diffusion risk
as well as jump risk partly. The hedge ratio consists of a diffusion component and a
jump component. The value of the LRM hedge portfolio is equal to the (discounted)
expected terminal payoff of the option weighted with a so-called minimal martingale
density. Tt is a weighted sum of Black/Scholes values where some weights may be
negative. The latter property is due to our result that the minimal martingale density
is negative with positive probability if, e.g., the market price of risk is positive.
However, introducing a single call does not admit arbitrage opportunities if its value
is smaller than the underlying stock price and larger than the Black/Scholes value
based on the diffusion volatility.

We relate the LRM approach to the so-called locally variance-minimizing (LVM)
hedging strategy in Bates’ (1991) systematic jump risk model. By numerical analysis
we find that the LRM and LVM hedge ratios are less sensitive to changes in the
stock price than delta hedging strategies in the models of Merton, Black/Scholes,
and Bates. If the expected jump size is significantly different from zero and positive
(negative), then the LRM and LVM hedge ratios are substantially larger (smaller)
than e.g. Merton’s for out-of-the-money (in-the-money) calls. Moreover, the worst
case behaviour of the LRM strategy and LVM strategy are substantially better: The
99%-, 95%-, as well as the 90%-quantile of the total hedging costs are significantly

lower than for the alternative strategies.



1 Introduction

In the complete market model of Black and Scholes (1973) the terminal payoff of a
European option can be duplicated by a self-financing portfolio consisting of the un-
derlying stock and a money market account. Thus, one can hedge the risk of a short
position in the option perfectly by buying the duplicating portfolio. Unfortunately,
the Black/Scholes model does not allow for jumps in the stock price process. Mod-
elling jumps is, however, economically very appealing not only because of market
crashes (as in 1987 or 1989) but also because of the ability to explain skewness and
kurtosis observed in stock return data. However, modelling jumps with stochastic
amplitude leads to incompleteness of the market model. Thus, a self-financing du-
plicating portfolio no longer exists: pricing by arbitrage and perfectly hedging the
option are no longer possible. Option pricing requires general equilibrium arguments,
whereas in order to hedge the option (beside the initial investment) additional cash
infusions or withdrawals during the lifetime of the option or at the expiration date
are necessary. Since these additional costs are stochastic they determine the risk of

the hedging strategy.

The main purpose of this paper is not valuation but hedging options in the presence
of systematic jump risk. We assume that the stock price moves according to a Poisson
jump diffusion process with constant parameters and lognormally distributed jump
sizes, as it was first studied in the context of option valuation by Merton (1976).
We particularly focus on the locally risk-minimizing hedging strategy. Follmer and
Sondermann (1986) pioneered this approach in the special case where the discounted
actual stock price follows a martingale. At each point in time they require that the
risk, defined as the expected quadratic hedging error, is minimized. However, in
semimartingale models a risk-minimizing strategy does not always exist. Therefore,
Schweizer (1991) introduces a locally risk-minimizing strategy (LRM) and shows
that — under certain assumptions — a strategy is locally risk-minimizing if the cost
process is a martingale which is orthogonal to the martingale part of the stock price
process. The value of the hedge portfolio is then the discounted expected terminal
payoff of the option under the so-called minimal equivalent martingale measure.
Colwell and Elliott (1993) present a general formula for the minimal equivalent
martingale measure and the LRM strategy in jump diffusion models. However, their
assumptions only allow for bounded jumps. If jump sizes are lognormally distributed,
as assumed in this paper, a minimal equivalent martingale measure does not exist

since the corresponding density process (the minimal martingale density) is no longer



strictly positive. We repeat the analysis of Colwell and Elliott (1993) for lognormally
distributed jumps. In contrast to Colwell and Elliott (1993), we emphasize the fact
that the minimal martingale density is not strictly positive and calculate explicitly
both the value of the hedge portfolio and the hedge ratio. The value of the hedge
portfolio can be written as a weighted sum of Black/Scholes values where some of the
weights may be negative. However, we derive arbitrage boundaries for a European
call in a jump diffusion model, and all LRM hedge portfolio values computed lie
within these boundaries. The hedge ratio consists of a diffusion as well as a jump
component. The strategy is mean-self-financing, that is at each point in time the

expected sum of discounted cash infusions or withdrawals until maturity is zero.

We compare the LRM approach with the following strategies: If an investor (erro-
neously) assumes jump risk to be diversifiable he will apply Merton’s (1976) hedging
strategy. If on the other hand jump risk is not even perceived, a Black/Scholes strat-
egy (based on the diffusion volatility or the total volatility) would seem appropriate.
However, if jump risk is perceived and deemed to be systematic, Bates’ (1991) equi-
librium model offers a way to price but not to hedge the option. Assuming Bates’
price to be correct, we introduce a so-called locally wvariance minimizing (LVM)
strategy (a modification of the LRM strategy) and compare it with a delta-hedging
strategy. In contrast to the LRM strategy where the hedge portfolio value coincides
with Bates’ option value only at expiration, these latter two strategies track Bates’
prices at all times. We calculate the LRM strategy for representative parameters.
We find that the LRM and LVM hedge ratios are less sensitive to changes in the
stock price than delta hedging strategies in the models of Merton, Black/Scholes
or Bates. This is a very desirable property because it leads to less adjustments of
the hedge portfolio. In addition, the worst case behaviour of the LRM and LVM
strategies is considerably better: The 99%-, 95%-, and 90% quantiles of the total

hedging costs are substantially lower.

The paper is organized as follows. Section 2 presents the relevant stochastic
processes. Section 3 discusses especially the LRM hedging strategy and compares
it with the alternative strategies in Merton’s, the Black/Scholes, and Bates’ model.
Finally, arbitrage boundaries in the jump diffusion model are presented. In Section
4 we analyse how the LRM hedge reacts to changes in the parameter values. A
comparison of sensitivities and total hedging costs is made with respect to the other

strategies. Section 5 summarizes the main results.



2 Model Framework

We consider a frictionless market with one stock and a riskless security. Trading is
continuous in time on the interval [0,7]. The riskless interest rate, r, is constant,
and therefore the value of the money market account at time ¢ is given through
B; = exp(rt).

2.1 Stock Price Dynamics

The stock price follows a Poisson jump diffusion process with lognormally distributed

jump sizes. It satisfies the following stochastic differential equation:

dS; = aS;-dt + opS-dW, + / ySi- (v(dy, dt) — H(dy)dt) (1)
where

a = the constant instantaneous drift of the total process,

W = astandard Brownian Motion, op is the constant volatility of the diffusion,

v = ahomogeneous Poisson measure with deterministic compensator H (dy)dt
(see, e.g., Jacod/Shiryaev (1987 p. 70)). The measure v counts the num-
ber of jumps of size x € [y, y + dy| which occur at time s € [¢,t + dt]. We
denote by A = E(fo1 [ dv) the mean number of jumps in unit time.

H = the A-fold of the distribution function of a random variable L; where

In(1+ L;) is normally distributed with mean oy — la?, and variance o%.
We write In(1 + L;) ~ N(a; — 3067,07). Moreover, k = + [yH(dy) =
E(L;) = €% — 1 denotes the expected percentage jump size in the stock

price.

Alternatively, the integral expression in (1) can be written in the following way: N, =

fo [ v(dy,ds) is a Poisson-counting process with parameter A and arrival time T; =
inf{t|N, = i}. Furthermore, (L; = fT-,l [yv(dy,dt)); is a sequence of independent
identically distributed random variables with in(1+ L;) ~ N (a; — 307,07). Then

w dy, dt Z 17 ,Ti(w))(dyv dt) )

where ¢, denotes the Dirac measure in point @ and 1 the indicator function. With
I = Zz Li]‘]Ti—lyTi} fOHOWS

/ " ySe- (v(dy, dt) — H(dy)dt) = S (IdN; — Medt).

[ee]



The process is defined on a probability space (2, Fr, P) endowed with the right-
continuous, P-complete filtration, (F;);, generated by S (see e.g. Jacod/Shiryaev
(1987, p. 2)). With the exponential formula for semimartingales (see, e.g., Protter
(1990, p. 77)) follows:

=1

N
1
S, = Sy exp {(a - 50% — Nt +opW, + Zln(l + Lz)} .

St is square-integrable. We will also work with discounted processes since it is
often convenient not having to regard the interest rate explicitly. That gives us the
following stochastic differential equations for the discounted price processes of the

money market account, 3, and the stock price, Z:

g = 0

dZ; = (a—nr)Z-dt+opZi-dW, + / yZ (v(dy,dt) — H(dy)dt).  (2)
(av—7) equals the expected excess return of the stock. Z is a special semimartingale.
Therefore, there exists a unique decomposition of Z into a predictable process with
finite variation A and a local martingale M. The latter is the sum of a continuous

local martingale M€ = Z¢ and a purely discontinuous local martingale M¢ = Z4
(see e.g. Jacod/Shiryaev (1987, p. 43)):

7 = ZO+/Z(a—r)dt+/ZoDdW+//yZ(y(dy,dt) — H(dy)dt) . (3)

A Mce Md

[\

M

= AE(L?) = A((k+1)%"7 —2k—1) the instantaneous variance of

the jump component of the price process and by o2, = 0% —l—af-um the instantaneous

We denote by o2

Jump

variance of the total price process.! Then v = a?-ump /ol represents the percentage

of the total stock variance explained by the jump component.

LContrary to most empirical papers (e.g. Bates (1991), Beinert/Trautmann (1991)) our process
parameters refer to the price process and not the return process. The instantaneous variance of
the stock price equals (see, e.g., Duffie (1992, p. 80))

d Ziar
o, = govar < Zt: |ft>

Replacing Z by Z¢ and Z by Z°¢ we get o2

Jump

7=0

and 0%, respectively.



2.2 Density Processes

The value of a European option corresponds to the expected value of its discounted
terminal payoff with respect to a not necessarily unique equivalent martingale mea-
sure.? Put differently, the value of the option equals the expected value of the dis-
counted payoff weighted with the Radon-Nikodym-density of the martingale mea-
sure. We determine the value of a hedge portfolio in a similar way. Therefore, we
look at density processes ( in a jump diffusion model such that Z( becomes a mar-
tingale under P. We want to consider a Markovian model where density processes

are given through the following differential equation:
d¢e = G-g(t, Zi- )dW, +/ G- (h(t, Ze-,y) — 1) (v(dy,dt) — H(dy)dt) (4)

with (; = 1. We assume functions g and h such that ( is P-square-integrable. This
guarantees that SC is integrable. Moreover, ¢ is a martingale and ¢, = E((p|F;).
The function ¢ is responsible for the transformation of the diffusion part of the
price process whereas h transforms the jump part. In order to be able to consider
a Black/Scholes hedge as well as the locally risk-minimizing hedge, we do not —
contrary to Colwell and Elliott (1993) — assume ( to be strictly positive. Hence the
corresponding measure dP%" = (;dP is not necessarily equivalent to P. It is even
signed when the density process becomes negative with positive probability. To allow
for the non-positivity of ¢ as well as the martingale property of (Z we recall the
following definition of Schweizer (1992).

Definition 1 A local P-martingale ¢ with ¢y = 1 is called a martingale density for
7 if the process (Z is a local P-martingale. € is called a strict martingale density if,

i addition, C s strictly positive.
It follows:

Lemma 1 The density process ¢ is a martingale density if

{(a—r)+opg+ / (h— )y H(dy) }=0 (5)

2Recall that an equivalent martingale measure P* is a probability measure such that on the one
hand Z is a martingale with respect to P* and on the other hand for A € Fp we have P(A) > 0 if
and only if P*(A) > 0. This measure defines a unique Radon-Nikodym-density (y = dP*/dP and
a density process (; = E({r|F:) such that Z( is a (local) martingale under P.



PROOF: see appendix or Colwell/Elliott (1993).

In the following we only consider martingale densities. The existence of a strictly
positive martingale density also implies that the jump diffusion model contains no
arbitrage opportunities: If we choose a constant function h > 0 and determine the
function ¢ according to equation (5), the corresponding density process is strictly

positive:
7
(; = exp (th — Et +1In(h)N; + (1 — h))\t> > 0. (6)

Therefore P9" is an equivalent martingale measure implying no arbitrage (see, e.g.,
Duffie (1992)). Since h is constant but otherwise arbitrarily chosen there exist many

equivalent martingale measures and thus the market is incomplete.

2.3 Value of the Hedge Portfolio

Consider a European path-independent option which pays off ¢(Sr) at time T for a
suitable function ¢. Then — as mentioned above — we can describe the value of the
option at time ¢ as the discounted expected value of the payoff (conditional on F;)
with respect to some equivalent martingale measure. By analogy, we want to define
the value of the hedge portfolio, F, as the discounted expected payoff of the option
weighted with the martingale density. We get®

F(6,5) = poF (c<sT>§—j|ft) . )

However, since ( may not be strictly positive, we have to be cautious about inter-
preting F' as the value of the call in an arbitrage-free market. We only consider
functions ¢(Sy) such that F(t,s) is once continuously differentiable in ¢ and and
twice continuously differentiable in s for + < T.* In addition, ¢(Sy) should be P-

square-integrable and thus ¢(S7)( integrable. The discounted value process is given

3To be correct we would have to write (47 instead of (7/(; where (;7 = 1 + ftT d(ss (see,
e.g., Colwell/Elliott (1990)). That means that we forget the history of ¢ for calculating F'(¢). This
is relevant when (; is zero with positive probability as with the Black/Scholes hedging strategy

discussed in section 3.
4That is particularly the case for the European call and the martingale densities considered

in section 3. However, the value function F'(¢,s) is usually not differentiable with respect to s for
t="T.
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The following Proposition 1 confirms the results of Colwell and Elliott (1993) with

respect to the differential representation of the value process of the hedge portfolio.

Proposition 1 The discounted value function V (t, z) satisfies the deterministic par-

tial differential equation
0 = Vi- [VishH(dy) + V.0
+ [ (Ve ) - ve) ), 0
and V(t,7Z(t)) satisfies the stochastic differential equation
AV = V.Z(a—r)dt+ VZZ/(h — VyH(dy)dt + V.opZdW
+/ (V(Z(1+y) - V(2)) (v(dy,dt) - hH(dy)dt) . (10)
Accordingly, we have the following partial differential equation for F(t,s):
0 = F,—rF+rF;s— /FsyshH(dy) + %Fssszo%

+/ (F(s(1+y)) — F(s) ) hH(dy). (11)

The subscripts denote partial derivatives. As in the following the integrands of the

stochastic differential equations are evaluated at time t™.

PROOF: see appendix or Colwell/Elliott (1993).

This partial differential equation is known for special functions h. For instance, for
h =1 we get Merton’s (1976) differential equation:

1
F,—rF +(r—Mk)F,s + iFsss%%, + AEL(AF) =0, (12)



where Fr(AF) = Er(F(s(1+ L;)) — F(s)) denotes the expectation with respect to
the jump size L;. For h = 0 we derive the Black/Scholes (1973) differential equation:

1 2 2
F,—rF +rsF, + §Fsss op=0. (13)

If we choose a positive and constant function h with A # 1 we obtain Merton’s

equation with a transformed jump parameter A=\ h.

2.4 Hedge Ratio and Hedging Error

In the following we choose a martingale density ( in order to specify a hedge plan
for the option. The value of the hedge portfolio F' is then given through (7) and thus
the value of the portfolio at the expiration date, F7r, is equal to the exercise value of
the option ¢(Sy). We also choose a predictable hedge ratio ¢ with F( [ ¢*d(Z, Z)) <
00.” It determines the number of shares of the stock in the hedge portfolio. The
number of shares in the money market account, n, is determined such that the
portfolio value equals F, i.e. n = (F' — ¢S)/B. Since the market is incomplete we
can not perfectly hedge the option with a self-financing strategy. Therefore, we need
additional cash infusions (or withdrawals) in order to finance the hedge portfolio.
The costs C' induced by the hedging strategy then consist of the initial cost of the
hedge portfolio, Cy = F}, and the additional cash flows during the life of the option,
necessary to maintain the hedge portfolio. We also call C' hedging error or tracking
error (although, strictly speaking, the hedging (tracking) error only consists of the
additional costs, C'— Cy). Thus, the changes in the value of the hedge portfolio are
due to the additional costs as well as to gains in the stock position and in the money
market account, dF = ¢dS + ndB + dC'. It follows that®

t t
Clt) = Ft) —/ 6dS — / 0B (14)
0 0
The discounted hedging error, I', with I'y = Yy is then equal to
t 1 t
['(t)y=T, —|—/ —dC =V (t) —/ odZ . (15)
o B 0

Using equations (2) and (10) and rearranging terms we get the following stochastic

differential equation for I'.”

5(.,-) denotes the predictable (or conditional) quadratic covariation process (see e.g. Protter
(1990, p. 98)).

6Tt is more intuitive to evaluate the second term for 7 since the hedging strategy should be
predictable. However, note that [n_dB = [ndB.

"Replacing V with F and Z with S yields the stochastic differential equation for C.



il = dV —¢dZ
— V.opZdW + / (V(Z(l +y)) - V(Z)) (I/(dy, dt) — H(dy)dt>
—$opZdW — / by Z(v(dy, dt) — H(dy)dt) (16)
+{V.z(a-r)+ VZZ/(h — 1)y H(dy)
+/ (V(2(1+9) = V(2))(1 = W H(dy) - oo~ 1)Z } dt..

= [ W20+ = V() - w2y
+ (V.opZ — popZ)dW (17)
+{Viza -+ vz [ (- vytiay)

_/ (V(Z(1—|—y>> _V(Z)) hH(dy)+/¢yZH(dy)
—pla—1)Z } dt.

The (discounted) hedging error I' consists of a jump component, a diffusion com-
ponent, and a time component. A strategy is called mean-self-financing if the dis-
counted cost process forms a martingale, that means that for each ¢ the remaining

discounted costs have zero expectation.



3 Alternative Hedging Strategies

So far we calculated the value of the hedge portfolio in the assumed incomplete
market setting by means of a martingale density. We now examine the locally risk-
minimizing (LRM) hedging strategy of Schweizer (1991) for a European call and
compare it with Merton’s (1976) hedging strategy and the Black/Scholes hedging
strategy based on the diffusion volatility and on the total volatility, respectively, as
discussed by Naik and Lee (1990). Finally, we consider Bates’ (1991) pricing model
for systematic jump risk and compare a locally variance-minimizing (LVM) strategy

and a Delta-hedging strategy.

3.1 Locally Risk-Minimizing Hedging Strategy

In an incomplete market where the actual discounted stock price process follows a
martingale, Follmer and Sondermann (1986) introduce a mean-self-financing, risk-

minimizing hedging strategy: They define a risk process

Ri(¢,n) = E((Tr —T,)*| F,)

representing the expected remaining quadratic hedging error. A strategy is called
risk-minimizing if it minimizes R; for each t < T. It exists in their setting but
might not exist if the price process follows a continuous time semimartingale. Hence
Schweizer (1991) extends this concept by introducing a locally risk-minimizing strat-

egy. He starts with the following definition.

Definition 2 A trading strateqgy A = (0,€) is called a perturbation if ¢ is bounded
and 6St + eBr = 0.

That means that a strategy (¢, n) generates the same final cash flow as the perturbed
strategy (¢ + 6,1 +€). With Al g = (61}, €1}5y) and with a partition 7 of [0, 7]
where 0 = t; < t; < ... <ty =T Schweizer (1991) introduces the risk quotient:

Rt- ) A titiv1]) — Rti ’
TT((qba 77)7 A) = llg((f]\;’)];% ] l: <}\>4’ M>t (-(;;,;7» ]ti,ti+1] . (18)

. 141 7
7

The numerator determines the additional risk that arises from the perturbation A.
Division by the denominator standardizes the risk measure, i. e. the additional risk
is allowed to be larger when the additional (conditional) covariance of M is large.
Schweizer (1991) defines:

10



Definition 3 A trading strategy (¢,n) is called locally risk-minimizing if ®
liminfr™ ((¢,n),A) >0 Py —ae.

holds true for every perturbation A and every increasing sequence (7,), with |1,| =

max |ti+1 — tz| — 0.

Each deviation of the locally risk-minimizing strategy leads in the limit to a rise
in the risk. Schweizer (1991, Prop. 2.3) shows that — under certain assumptions
on Z which are all satisfied here — a strategy is locally risk-minimizing if the dis-
counted cost process I' is a martingale that is orthogonal to M, i.e. (I', M) = 0.
The orthogonality result can also be explained as follows: The space of processes
{[©dM|E([ ©*d(M)) < oo} consists of all contingent claims that can be hedged
by the martingale part of price process. In order to hedge as much as possible of
an option we project the martingale part of V' on the space {[ ©dM}. The not-
hedgeable part is equal to I' plus some (continuous) process with finite variation. It
follows that (I', M) = 0. We get

Lemma 2 The hedging error is orthogonal to the martingale part of the price if the

hedging strateqy is given by

_d{M,V)
O = G0
= (1—7)F3+7%. (19)

PROOF: see appendix.

The hedge ratio consists of a diffusion component and a jump component. The
diffusion part corresponds to the first derivative of the value process with respect to
the stock price which is weighted with the percentage of the total variance explained
by the diffusion component. The jump part is given by an instantaneous J-factor,
i.e. the instantaneous covariation of the jumps in the stock price and in the hedge
portfolio value which is divided by the instantaneous variance of the jump in the
stock price, B (ASAF)/E;((AS)?). It is weighted with the percentage of the total

variance explained by the jump component.

Furthermore, the cost process I' follows a martingale under the conditions of the

following lemma.

8dPy; = dP x d(M, M) denotes the Doléans measure of (M, M) on the predictable o-field (see,
e.g., Schweizer 1991, Métivier 1982 p. 86).

11



Lemma 3 Since  is assumed to be a martingale density the cost process I' is a

martingale if

a—r)o a—r
g:—# and hzl—( 2)y
Oiot Oiot
The corresponding martingale density is given by
—(a—1)o 1 (a—r)%o? a—1r)\k
= o (Pl oy Lo rh 0k
Oiot 2 Otot Oiot
N
a—r)L;
11 (1—-£——j;2——> : (20)
Oiot

=1
PROOF: see appendix.

By inserting g and h into equation (4) and rearranging terms one can see that d¢ /¢ =
—adM where a = (a —r)Z/(02,2%) = dA/d{M,M). This defines the minimal
martingale density introduced by Schweizer (1992). If it is a strict martingale density
then dP%" = (dP is the minimal equivalent martingale measure defined by Schweizer
(1991). Only if ¢ is strictly positive the minimal equivalent martingale measure
exists.” However, observe that ( is strictly positive only if the factors in the last
product are positive. Consequently, if (1 — ((a—17)L;)/02,) is negative with positive
probability, P%" is not an equivalent probability measure. Since so far we have not

used the fact that In(1 + L;) is normally distributed we can formulate the following

Proposition 2 In a Poisson jump diffusion model with arbitrarily distributed,

square-integrable jump sizes, L;, the minimal equivalent martingale measure exists

of and only of

— )L,
o0l g (21)

Otot

PROOF: This follows directly from the definition of the minimal martingale density
and ( >0 P — a.s. It derives also directly from Theorem 2 of Schweizer (1992).

An application to our setting yields the following corollary:

9Follmer and Schweizer (1991) show for continuous processes that the minimal martingale
measure is unique if it exists and that its Radon-Nikodym density is equal to the minimal martingale
density. Their proof can be given analogously for the Poisson jump diffusion process.

12



Corollary 1 In a Poisson jump diffusion model with lognormally distributed jump

sizes the minimal equivalent martingale measure exists if and only if

<0. 22

O—tZot ( )
PROOF: Since (1 + L;) is lognormally distributed the values of L; lie in the open
interval | — 1, 0o[. Therefore, equation (21) is satisfied if and only if equation (22) is

true.

Consequently, in typical situations where the market price for risk is positive, (o —
1)/ > 0, the minimal martingale measure does not exist. Furthermore, we should
stress again that we have to be cautious about interpreting the value of the hedge

portfolio as a call value in an arbitrage-free market.

The following differential equation describes the value of the hedge portfolio for the
locally risk-minimizing strategy. Compared with Merton’s differential equation, we

get an additional jump term proportional to the excess return.

Proposition 3 The value of the locally risk-minimizing hedge portfolio satisfies the

following deterministic partial differential equation:

1
0 = F,—rF+(r—\k)sF, + 5Fssa%)s? + \E,(AF)
A _
Me=r) (FsBL(L?) — EL(AFL) ) . (23)

Oiot
PROOF: This follows directly from Proposition 1 and h =1 — (a — 7)y/o2,.
The value of the locally risk-minimizing hedge portfolio results from:

Theorem 1 In the Poisson jump diffusion model with constant parameters and
lognormally distributed jump sizes in the stock price the value of the locally risk-

minimizing hedge portfolio for a European call is given by

F= Z Z U FP (S, K, 1y g, 00y T) (24)

n=0 [=0

where

13



FB5 = Black/Scholes value

T = T —t= time to expiration
oy = r—Me+ nayHn—l)oj
A= a(1- gk
P (a=r)\E(L2)
k = 3 ( Ak — e )
o = "y g2
- Py "o [ n—I
an; = exp(—Ak+1)7) (A(k:!lm (7) (;\(,;l:_l)> (5\(~b+1)>
a = (/\ + %) (k+1)

e (BL2) +2k+1) .

PROOF: Evaluating equation (7) yields formula (24).

Having determined the value of the hedge portfolio we can now derive the hedge

ratio:

Theorem 2 The locally risk-minimizing hedge ratio equals

EL(ASAF)
R AR

= (1= ayN(di(n,1) (25)

n=0 [=0

A\ ex — FBS(S,K,’I“nl,Un,T)
+”}’0_2 ZZanvl { —k S

Jump n=0 [=0
+(k+ 1)26"3 FBS(Sv K 710, 0041, 7)
S

FBS(Sv Krv Tn—l—l,l—i—la Un—i—la 7—) }
S

—(k+1)
where in addition to the notations of Theorem 1 we use

di(n,l) = (In(S/K)+ (rn;+0.502)7)/(0,/T).

PROOF: The result follows from inserting the value of F', according to equation (24),

into equation (19).

The value of the locally risk-minimizing hedge portfolio is a weighted sum of
Black/Scholes values. The weighting factors sum up to unity. However, some of the
weighting factors are negative if condition (22) is not satisfied. If no jumps occur (i.e.
A = 0) formula (24) specializes to the formula of Black and Scholes (1973); the same

14



is true for the hedge ratios. If we are in the pure jump model of Cox and Ross (1976)
with a constant jump size (i.e. op = o; = 0) the locally risk-minimizing portfolio
value and hedge ratio coincide with those of Cox and Ross. F' equals Merton’s (1976)
value if the expected return of the stock coincides with the riskless return, i.e. the
expected excess return is zero and the discounted price process follows a martingale.
In both cases we determine the value of the hedge portfolio by simply taking ex-
pectations under the original measure. However, the hedge ratios are different since
jump risk is not hedged in Merton’s model while it is partly hedged by the locally

risk-minimizing strategy.
The increments of the cost process can be decomposed in the following way:
dC = AF — ¢pAS
+(F, — ¢)opSdW (26)
+(PpAES — AEL(AF))dt.

where A stands for the jump of the process (e.g. AF = F(t)—F(t7)). The expression
in the first line gives the hedging error caused by a jump in the stock price. The
expression in the second line stems from a change in the diffusion component of the
stock. The last term results from a change in time. Therefore, we have a hedging error
even if no jumps occur. Figure 1 shows for representative parameters the hedging

error of the locally risk-minimizing hedging strategy due to changes in S (for fixed

).

3.2 Merton’s Hedging Strategy

Merton (1976) assumes that jump risk is diversifiable and devises a hedge portfolio
where jump risk is not hedged, therefore ¢ = F;. He derives the deterministic partial
differential equation for F' given through equation (12). Solving the equation for
lognormally distributed jump sizes in the stock price yields the following formula

for a European call and the following hedge ratio, respectively:
F = FMB(S,[(,T,’I“,O'D,)\,O[J,O'J)
N7 (AIT)n -
= Ze A fFBS(S,K,T,rn,an) (27)
and

qb — FMe

= e (An?nzv(dl (n)) (28)
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Figure 1: Locally Risk-Minimizing Hedging Error due to Stock Price
Changes

The solid line depicts the value of the hedge portfolio as a function of the stock price, F'(S),
for the parameters r = 0.1, K = 100, ' =1/12, a = 0.2, A = 3, 04t = 0.3 and v = 0.8.
The dashed line gives the value of the unadjusted hedge portfolio as a function of .S when
the hedge ratio ¢ as well as n are determined for S_ = 100 (Panel A) and S_ = 110 (Panel
B), respectively, i.e. ¢(S_)S+n(S_)B. The slope of the dashed line is equal to ¢. Since the
hedge ratio does not correspond to the first derivative (it can be either greater or smaller)
the dashed line is not the tangent to the portfolio value function. The hedging error due
to a change in S (¢ fixed) equals the vertical differences between these two lines. It can be
negative as well as positive. A hedging error appears if the stock price jumps, but even if
the stock price changes continuously, the hedging error due to a change in S is not equal

to zero.

Panel A: Positive Expected Jump Size k = 0.105
65 P P P P T ;

97 98 99 100 101 102 103

value of the adjusted hedge portfolio
****** value of the unadjusted hedge portfolio

Panel B: Negative Expected Jump Size kK = —0.095
15 £ ‘

145
13 4

107 108 109 110 111 112 113
S

value of the adjusted hedge portfolio
****** value of the unadjusted hedge portfolio
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where

FB5 = Black/Scholes value,

T = T—1t,

N = AMk+1),

o, = 05+ ﬁ,

T = r— A4+ 2

di(n) = (In(S/K)+ (r, +0.502)7)/(0,/T)

According to Merton (1976) the hedging error equals

dC = AFMe_FMeAS
+ (AKSFMe — NEL(AFY®)) dt . (29)

Contrary to the locally risk-minimizing strategy the hedge ratio now consists of a
diffusion component but not of a jump component. Hence the hedging error does
not contain a diffusion component as can be see from equation (29). It now consists
of two terms. The expression in the first line gives the hedging error in case of a
jump, which is always positive since FM¢ is a convex function in S. Figure 2 shows
for representative parameters the hedging error of Merton’s strategy due to changes
in S (for fixed t). The second expression represents the hedging error that arises
continuously in time. It is always negative thus compensating for the first term. We
see that the total hedging error is not zero even if the stock price does not jump.
The value of the hedge portfolio is again a weighted sum of Black/Scholes values.
Although this strategy does not hedge jump risk the value of the hedge portfolio

takes into account that with each jump the variance of the stock price changes.

In a formal sense, with the locally risk-minimizing hedging strategy we projected
the martingale part of V on { [ ©dM}. It followed that (M,I) = 0. Here, we only
hedge with the diffusion component. Therefore, we project the martingale part of V'
on the space { [ ©@dM|E([ ©*d(M*, M) < oo} consisting of all contingent claims
that can be hedged by the diffusion part of the stock price process. It follows that
(I', M¢) = 0. From the stochastic differential equation of I', (16), as well as the
orthogonality of M¢, and M? and t (i.e. (M¢, M%) = 0, and (M¢,t) = 0) we infer
that (I', M) = 0 is equivalent to the hedge ratio being equal to the first derivative

17



of the hedge portfolio value:!°

d(VMe, M°)
d(Me, M)
— ‘/ZMe — FSMC . (30)

We know from Proposition 1 that setting h = 1 yields Merton’s partial differential
equation, and from Lemma 1 that we have g = —(aw — r)/op. Inserting h as well as
¢ into equation (17) yields again the hedging error. We also derive that Merton’s

strategy is mean-self-financing.!* For the martingale density we infer

0 =ry, Loty
op 2 op

G = exp { - (31)

Since ¢ is a strict martingale density, P%" is an equivalent martingale measure.'?

3.3 Black/Scholes Hedging Strategy

We have seen that Merton’s hedging strategy hedges diffusion risk completely but not
jump risk. However, it takes into account that the jump component of the stock price
process contributes to the variance of the process. We now consider a Black/Scholes
hedging strategy which even ignores the variance of the jump component as discussed
by Naik and Lee (1990). This would be the case if a Black/Scholes world is assumed
and the variance of the process is estimated for a period where no jump occurs.
Consequently, the value of the hedge portfolio corresponds to the Black/Scholes

0Since we can put the integrand ¢ in front and since (4,-) = 0 we get

A0, My = d(V — / 6dZ, M°)
= d(V,M°) - 6d(Z, M°)
= d(V,M®) — d(M°, M°).

Orthogonality is thus equivalent to ¢ = d(M¢,V')/d(M*, M¢) . We have d(M°, M*) = ¢% Z?dt and
d(V,M*) =V.Z?c%dt and thus ¢ =V, = F;.
UTnsert h and ¢ into equation (41) of the proof of Lemma 3 (see appendix). That yields the

martingale condition for T’

12\We would obtain the same result by arguing thus: Since the variance of the jump component
is perceived but jump risk is not hedged the density process ( should not eliminate the jump
component but leave it unchanged. This can be achieved by setting h = 1. From the martingale

—(a=r)

property of the density, equation (5), we have g = . Finally, requiring a mean-self-financing

strategy yields ¢ = V..
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value based on the diffusion volatility, op:

FB5 = FB9(S K,7,r0p) (32)
= SN(dy(op)) — Ke™""N(dy(op))

where
dy = (In(S/K)+ (r+0.50%)7)/(0py/T)
dy = dy— UD\/;
T = T-—t.

The hedge ratio equals the first derivative of the portfolio value with respect to the

stock price:

¢ =F = N(dy). (33)

Conditional on no jump this strategy is self-financing. However, contrary to the
locally risk-minimizing strategy and to Merton’s strategy this strategy is not mean-

self-financing. If a jump occurs the hedging error is always positive,
dC = AFPS —FPSAS >0, (34)

since the Black/Scholes call value is a convex function in S. This hedge plan clearly
'underhedges’ the option. According to Naik and Lee (1990), a perfect hedge requires
a jump financing security — that is a security that pays exactly dC. Since such a
security does not exist the approach of Naik and Lee (1990) is tantamount to totally
ignoring the jump component of the stock price process. That means that the hedger

acts as if he only observed the diffusion component and its volatility.

In a formal sense this approach is equivalent to choosing h = 0 as can be seen from
the partial differential equation (13). Condition (5) for martingale densities then
yields ¢ = —(aw — r — Ak)/op. Hence, the density process equals

(= exp{_(Oé_T_Ak)Wt—1 <_(a_r_/\k>>2t—1\ft+/\t}

Op 2 Op
H(l — AN,)et N
s<t
—(a—r—X\k) 1/ —(a—r—=Xk)\>
= exp W, — = t+ Mt '1{Nt:0}- (35)
Op 2 Op



The martingale density is no longer signed'®. However, it is not strictly positive
but becomes zero when a jump occurs. That means that the martingale density
assigns zero probability to jump events thus eliminating the explicit influence of the
jump component on the hedge portfolio. Nonetheless, the value of the hedge portfolio
jumps, when S jumps since the value of the hedge portfolio is a continuous function of
S. Figure 3 illustrates for representative parameters the hedging error due to changes
in S (¢ fixed). It shows that this hedging error — and thus the total hedging error
since the money market account refinances the portfolio for infinitesimal changes —
is positive if S jumps. This also implies an arbitrage opportunity if the call is traded
for FB5. We get:

Lemma 4 In a Poisson jump diffusion model the value of a European call must be

larger than the Black/Scholes value based on the diffusion variance.

PROOF: Buy the call for F'®° and sell the hedge portfolio. Then the cash inflow
equals the hedging error dC' = AFP%— FB5 AS which is nonnegative with probability
1 and strictly positive with positive probability. Therefore, this strategy forms an
arbitrage opportunity.

A Black/Scholes hedging strategy based on the total variance, o4, corresponds to
an investor who ignores jump risk but who uses historical volatility estimators from

a period with stock price jumps. Hence the value of the hedge portfolio is

FBS == FBS(Sa KaTv r, O-tOt>
= SN(di(04t)) — Ke ""N(do(0401)) -

The hedge ratio and the hedging error are given by

¢ = FsBS(Utot> = N(d1(0t0t>>
1
dC = AF —F,AS— §F3552 2 dt

O jump

respectively. This Black/Scholes hedging strategy is no longer self-financing even if

no jumps occur until the option’s maturity: dC' = —0.5F83520']2-umpdt. 14

13By ’signed’ we mean negative with positive probability.

14The Black/Scholes value based on the total variance is not computable by changing the mea-
sure. The Girsanov transformation of a Brownian motion always yields a Brownian motion with
the same variance. Therefore, no martingale density exists that could transform the jump diffusion
process into a geometric Brownian Motion based on the total variance.
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3.4 Hedging Strategies in Bates’ Model

We now regard Bates’ systematic jump risk model (1991) and assume that all the
Jump risk is purely systematic'® and is therefore priced. Bates computes a value for
European options in an equilibrium model where the representative investor has a
time separable utility function with constant relative risk aversion R. The resulting
option pricing formula for a European call corresponds to Merton’s formula with a

transformed Jump part:
FBG(Sv [(7 T,0p,T, )‘7 ay,0y7, R) - FMe(Sv [(7 T,0p,T, )‘*7 O‘?v UJ)

where

A*

*

Qg

Nexp(—Ray + 05R(1 + R)o3)

O[J_RO—?]

FPB% can be calculated with the help of the following martingale density
—(a—7r) = NE* + \k

Op

a6, = G- aw + / G- (g +1) " = 1)(v(dy, dt) — H(dy)dt)

with £* = exp(a*) — 1. For R = 0 density and price collapse to those of Merton.

Assuming Bates’ option price to be correct, we propose two hedging strategies where

the values of the corresponding hedge portfolios track these prices all the time.'¢

Delta Hedge

A common way to hedge options is by choosing a Delta-hedging strategy. In analogy
to the Black/Scholes model or the Merton model for jumps the hedge ratio is chosen

equal to the first derivative of the call value with respect to the stock price:
6=FP.
The hedging error is equal to

dC = AFP*—FP'AS
+ (FPNE*S — Ep. (AFP))dt .

I5].e. S is perfectly correlated to the wealth process of the economy.
16Recall that in general the value of the LRM hedge portfolio is different from Bates’ option

price.
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Locally Variance Minimizing Hedging Strategy (LVM)

As mentioned before, a strategy is locally risk-minimizing if the discounted hedging
error I' is a martingale which is orthogonal to the martingale part of the price
process.’” Loosely speaking, we minimize the local variance of the hedging error
d([',T'y under the condition that the mean hedging error is zero at all times ¢. A
similar hedging strategy for the Bates model reads as follows: Minimize the local
variance of the hedging error d(I',T'), under the condition that at all times ¢ the
value of the hedge portfolio equals Bates’ model price. Again the hedge ratio ¢ can
be obtained by projecting the martingale part of Bates’ value, V"% on { [ ©dM}."®
This leads to a hedge ratio that has a very similar form to the locally risk-minimizing
hedge ratio:*’

d(VB*, M)
d(M, M)

= (1=9) ) aN(d(n))

Er(ASAFP)

=R TR sy

+y n
ajz-ump prt S
» FBS(S K, riy,0001,7)
k 1 2 o7 ) y Im4+1yYn+1>
+(k+1)% S
FBS(S, K 1}y, 0041,7)
i ]{? 1 ) yI'n+1rYn41y } ‘
(k+1) -
where
R exp(—)\*(k*—i-l))w
e = r—= XNk 4 na*/T
r,";' = 1.+ Roj/T
r;‘;' = rm+(R+1)o,/7 .

This yields the following hedging error:
dC = AFP* —¢AS + (FP* — ¢)SopdW
+{(FP* = ¢)((a —71) = Ak)S = N*E*(AFP*) + FP SNk} dt .

Figure (4) shows for representative parameters the hedging error of these two hedging
strategies due to changes in S (t fixed).

1"Under regularity assumptions.
18However, note that this time Bates’ value instead of the locally risk-minimizing portfolio value
is projected.

95ee appendix.
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Figure 2: Merton’s Hedging Error due to Stock Price Changes

The solid line depicts Merton’s value as a function of the stock price, FM¢(S), for the
parameters r = 0.1, K = 100, T = 1/12, o4ps = 0.3, v = 0.8, A = 3, k = 0.105. The
dashed line represents the value of the unadjusted hedge portfolio as a function of S where
the hedge ratio ¢ as well as n are determined for S_ = 100, i.e. ¢(S_)S + n(S_)B. It
corresponds to the tangent of the solid line since the hedge ratio equals the first derivative
of the portfolio value with respect to the stock price. The hedging error caused by a change
in the stock price (for fixed t) equals the vertical difference of these lines. It is zero when the
change in S is only infinitesimal and it is strictly positive when the stock price jumps since
the value function is a convex function of S. However, due to the position in the money

market account this strategy is mean-self-financing when changes in ¢ are considered.

97 98 99 100 101 102 103
S

value of the adjusted hedge portfolio
****** value of the unadjusted hedge portfolio
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Figure 3: Black/Scholes Hedging Error due to Stock Price Changes

The solid lines depict the Black/Scholes values as a function of the stock price, FB9(S),
for the parameters r = 0.1, K = 100, T'=1/12 04, = 0.3, v = 0.8, A = 3 and k = 0.105.
Panel A is based on op and Panel B on oy,;. The dashed lines represent the value of the
unadjusted hedge portfolio as a function of S where the hedge ratio ¢ as well as n are
determined for S = 100, i.e. ¢(S_)S+n(S_)B. They correspond with the tangents to the
solid lines in S_ since ¢ = FP¥. The hedging error due to changes in S (¢ fixed) equals the
vertical differences between these two lines. It is always positive since the value function
is a convex function in S. A hedging error appears if the stock price jumps, but if the
stock price changes continuously, the hedging error due to changes in S is equal to zero.
Whereas in Panel A the total hedging error is also zero for continuous changes in S (the
money market account finances the rearrangements of the portfolio) this is not the case in
Panel B.

Panel A: Based on op

97 98 99 100 101 102 103

value of the adjusted hedge portfolio
****** value of the unadjusted hedge portfolio

Panel B: Based on oy

value of the adjusted hedge portfolio
****** value of the unadjusted hedge portfolio
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Figure 4: Bates’ Hedging Error due to Stock Price Changes

The solid lines depict the Bates values as a function of the stock price, FB%(S), for the
parameters r = 0.1, K = 100, 7" = 1/12 o4,y = 0.3, v = 0.8, A = 3 and k£ = 0.105.
Panel A shows the hedging error based on the Delta hedge and Panel B based on the
locally variance-minimizing hedge. The dashed lines represent the value of the unadjusted
hedge portfolio as a function of S where the hedge ratio ¢ as well as n are determined for
S_ =100, i.e. (S-)S + n(S-)B. The hedging error due to changes in S (¢ fixed) equals
the vertical differences between these two lines. In Panel A the dashed line corresponds
with the tangent to the solid line in S_ since the ¢ = F?%. Consequently the hedging error
due to changes in S is always positive as in Merton’s or the Black/Scholes case. In Panel
B the hedge ratio is not equal to the first derivative. The hedging error due to changes in

S can be either positive or negative.

Panel A: Delta Hedge
65 P P P P T :

0 J \V 7\7\ VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
97 98 99 100 101 102 103
S
value of the adjusted hedge portfolio
****** value of the unadjusted hedge portfolio
Panel B: Locally Variance Minimizing Hedge
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value of the adjusted hedge portfolio
****** value of the unadjusted hedge portfolio
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3.5 Arbitrage Boundaries

As we have noted in section 2.2, the Poisson jump diffusion model contains no
arbitrage opportunities. With the help of Merton’s model we can give boundaries

for the arbitrage-free call value.

Proposition 4 There are no arbitrage opportunities for a single call if and only if
the call value F is smaller than the stock price and larger than the Black/Scholes

value based on the diffusion volatility:

F elFPS(ap),S]. (36)

PROOF: If we choose the function h to be positive and constant and determine g
according to equation (5) the corresponding density process ( is strictly positive
and thus determines an equivalent martingale measure P" (see equation (6)). The
partial differential equation for the value of the hedge portfolio F' = F'(g, h) coincides
with Merton’s differential equation but with a transformed jump parameter A= \-h.
We derive F(g,h) = FM¢()). Therefore, all call values F € {FMB(S\) A > 0} can
be written as expected discounted values with respect to the equivalent martingale
measure P thus allowing no arbitrage. Furthermore, it can be shown that (for
op, 0, k constant) we get lim;_, FM¢(\) = FP¥(0p) and also lim;___ FM¢(\) =
S, independent of the sign of the expected percentage jump size k. The latter is
remarkable because for A — oo the stock price converges to zero in measure. It
follows that for a single call all values in the open interval {FMe(S\) A > 0} =
|FB5(0p), S| are feasible without creating arbitrage opportunities. On the other
hand we can determine simple arbitrage strategies if the call value equals S and
FB5(0p) (as in Lemma 4), respectively. Therefore, S and F'#% are strict boundaries.

All call values calculated in the following subsections satisfy these boundaries.
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4 Numerical Analysis

We are now interested in the sensitivity of the LRM portfolio value and hedge ratio
with respect to the model parameters. Therefore, we compute portfolio values and
hedge ratios for typical parameter values. We want to focus especially on changes in
the money ratio and in the expected percentage jump size. Furthermore, we analyse
the differences between the hedge ratios of the LRM and LVM strategies and the
alternative strategies. Finally, we perform a Monte Carlo simulation to compare the

distribution of total hedging costs.

4.1 LRM Strategy for Representative Parameters

Table 1 shows how the locally risk-minimizing portfolio value depends on the exercise
price I, time to expiration 7', jump intensity A, and the expected jump size per unit
time A\k. We take the total stock variance, o2,, as well as the percentage of the total
stock variance explained by the jump, 7, as constant. Accordingly, the variance of
the diffusion component % as well as the variance of the jump component afump are
constant and the variance of the jump size in the return 0% decreases as k increases.
As expected, we find that the value of the hedge portfolio is an increasing function
of time to maturity and a decreasing function of the strike price. For given jump
intensity A, with increasing magnitude of the expected jump size per unit time Ak,
the value of the portfolio decreases, except for out-of-the money calls with a short
time to expiration where the converse is true. This observation confirms the result
of Trautmann/Beinert (1995) who find a similar relationship in the idiosyncratic
jump risk model of Merton (1976) and the systematic jump risk model of Bates
(1991). The influence of Ak on the hedge portfolio’s value decreases with increasing
A. This reflects the fact that for constant total variance, as A increases, the jump
component converges to a second independent diffusion process implying that the
whole process is again a geometric Brownian motion. In this case we know that the
drift @ = ap + Ak has no influence on the option value. Consequently, Ak as the

drift of the jump component looses its influence for increasing A.

Table 2 shows the corresponding hedge ratios. All other parameters kept constant
the hedge ratio decreases with increasing strike price. The relationship between the
hedge ratio and time to maturity is similar to that in the Black/Scholes model
(see, e.g., Cox/Rubinstein (1985, p. 223)). The hedge ratio always increases with

the drift of the jump component, Ak. Our intuitive explanation for this result reads
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Table 1: Values of the Locally Risk-Minimizing Hedge Portfolio

S =100, « =0.15, r =0.1, 4o = 0.3, y=0.8

Ne K |T=1/12 T=1/2 T=1|T=1/12 T=1/2 T=1

90 11.64 18.16 23.94 11.30 17.16 22.66

-0.1 100 2.96 11.08 17.75 3.60 10.91 16.82
110 0.29 5.63 12.44 0.67 6.41 12.14

90 11.28 16.89 22.31 11.22 17.01 22.47

0 100 2.72 9.79 15.91 3.53 10.77 16.64
110 0.45 4.98 10.78 0.74 6.34 11.99

90 10.96 15.76 20.85 11.14 16.85 22.29
0.1 100 2.56 8.91 14.52 3.48 10.63 16.46
110 0.63 4.85 9.89 0.81 6.28 11.84

as follows: While the Black/Scholes hedging strategy adjusts the hedge ratio after
a jump occurred, the locally risk-minimizing strategy obviously anticipates, on an
average basis, the hedge ratio appropriate after the next jump. Therefore, it is smaller
for small Ak and larger for large A\k. Again, the larger A the smaller is the influence
of Ak on the hedge ratio. As argued before, this results from the convergence of the

jump component to a geometric Brownian motion.

While the hedging strategies of Merton and Black/Scholes do not depend on the
expected excess return (o — r) the locally risk-minimizing hedging strategy does.
Figure 5 shows, for different &, the dependence of the locally risk-minimizing port-
folio value on the excess return. As before, we fix the total stock variance as well as
the variance explained by the jump component while the volatility of the jump size
in the return o is chosen accordingly. For k = 0, as (o — r) increases, the portfolio
value varies only slightly. However, for & = —0.1, as (« — r) increases so does the
portfolio value, whereas for £ = 0.1, the portfolio value is a decreasing function of
(aw —r). Figure 5 also depicts the dependence of the hedge ratio with respect to the

excess return. The hedge ratio increases with the excess return independent of k.
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Table 2: Values of the Locally Risk-Minimizing Hedge Ratio

S =100, « =0.15, r = 0.1, o0y = 0.3, v = 0.8
A=1 A=10

Ne K| T=1/12 T=1/2 T=1|T=1/12 T=1/2 T=1
9 | 0.63 068  0.73 0.85 0.79  0.79
0.1 100 | 042 055  0.63 0.53 063  0.68
110 | 020 040  0.52 0.20 045  0.56
90 | 0.80 080 081 0.87 080  0.80
0 100 | 0.61 068  0.72 0.57 064  0.69
110 | 039 053  0.62 0.23 047 057
90 | 093 090  0.89 0.90 082 081
01 100 | 0.78 079  0.80 0.61 066  0.70
110 | 054 063  0.69 0.26 048  0.58

Figure 5: Excess Return and the Locally Risk-Minimizing Strategy

$=100, K=100,r=01,T=1/2,A=1, 04os = 0.3, v = 0.8
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4.2 Comparison of Hedging Strategies

As mentioned above, for («—r) = 0 the portfolio value of the locally risk-minimizing
strategy is equal to Merton’s value. Therefore, one can also infer from Figure 5 how
the portfolio values of these two strategies differ for different excess returns. For
k = 0 the portfolio values are very similar, independent of the excess return. On the
other hand the portfolio values differ considerably if the absolute values for £ and

(ov — r) are high.

Figure 6 illustrates for different parameters £, the hedge ratios of the alternative
strategies as functions of the stock price. If the expected excess return is positive
and the expected jump size is significantly different from zero and positive (negative)
then the LRM and LVM hedge ratios are substantially larger (smaller) than the delta
hedge ratios for out-of-the-money (in-the-money) calls. Moreover, it shows that the
LRM and LVM hedge ratios are least sensitive to changes in the stock price. This
is a very important property because it means that changes in the underlying stock
require smaller adjustments in these risk-minimizing hedge ratios. Therefore, the
corresponding transaction costs and the hedging error due to discrete adjustments
of the portfolio are smaller than for the remaining strategies. Although not explicitly
presented here the lower sensitivity of the locally risk-minimizing hedge ratio with
respect to the stock price remains true even if the excess return is zero, (o« —r) = 0.
Recall that in this case Merton’s value is equal to the locally risk-minimizing portfolio
value while the hedge ratios are different. As shown in Figure 7, for fixed parameters
o2, and 7, Merton’s value and the portfolio value of the locally risk-minimizing
strategy converge if A goes to infinity. The same is true for the hedge ratios. This
again is due to the fact that in this case the price process converges to a diffusion
process and thus to a complete model where all prices and hedging strategies must
be equivalent. The difference in the Merton strategy and the locally risk-minimizing
strategy is largest for small A. If, on the other hand, A as well as af-ump go to zero we
also have convergence of the portfolio values and the hedge ratios for all strategies

since in this case the process converges to a Brownian motion with volatility o%.

4.3 Monte Carlo Simulation of Total Hedging Costs

A Monte Carlo Simulation?® based on 10,000 sample paths is used to derive the

frequency distribution of the total (discounted) hedging costs for all alternative

20We used the empirical martingale simulation method of Duan and Simonato (1996).

30



Figure 6: The Hedge Ratios as a Function of the Stock Price

Parameters: K =100, r=0.1,7=1/12, a =0.15, A =1, 04py = 0.3,y =08, R=1.

Expected Jump Size k = —0.1
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Figure 7: Difference of LRM hedge and Merton’s hedge as function of A

Parameters: K =100, S =100, r =0.1, T'=1/2, « = 0.15, Ak =0, 04t = 0.3, v = 0.8.
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hedging strategies. The hedge portfolio was adjusted only once a week; this discrete
rebalancing of the hedge portfolio results in an additional error term since in a strict
sense the hedge ratios are determined for continuous adjustments. Theoretically,
the initial costs and the mean costs of the LRM strategy and Merton’s strategy
should coincide; the divergence is mainly due to this discrete hedging policy. Table
3 shows the initial hedging costs as well as mean, standard deviation, skewness,
kurtosis, minimum, mazimum and nine quantiles of the total (discounted) costs
for hedging a European call, where the expected jump is of considerable size, k =
—0,2. It is remarkable that the initial hedging costs, 'y, differ by more than 9.50
dollars between Bates model and the Black/Scholes model based on op, whereas the
difference in mean hedging costs amounts to only about 1 dollar. Standard deviation
and skewness are smallest for the LRM and LVM strategies, but kurtosis is highest
for the LRM hedge. The quantiles for the LRM strategy and the LVM strategy
lie close together. It is striking that the worst case behaviour is best for the LRM
strategy and LVM strategy: the 99%-, 95%- and 90%-quantiles of the total hedging
costs are substantially lower. E.g., the total hedging costs are above 34.31 (34.20)
dollars only in 1% of the cases when applying the LRM (LVM) strategy. However,
using a delta hedging strategy costs more than 43.28, 43.43, 44.41 and 48.31 dollars,
respectively, with 1% probability. In 5% of the cases a delta hedging strategy requires
more than 33.83, 34.66, 35.27, and 37.79 dollars, respectively, whereas 27.39 (27.52)
dollars are sufficient with a LRM (LVM) approach. Figure 8 visualizes the empirical
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frequency distribution of the total hedging costs. It can be seen, that the mode of
the total hedging costs is lowest for the Black/Scholes strategy based on op.?' The
alternative delta-hedging strategies have higher modes of total hedging costs. The
modes are highest for the LRM and LVM strategies.

For a less extreme jump size, k, the differences in the shapes of the frequency dis-

tributions are similar though not as pronounced.

Table 3: Simulated Distribution of Total Hedging Costs

S =100, K =100, A\=1,k=-02, 044 =03, vy=08 T=1,a=0.15r=0.1, R=1

Hedging Strategies

Total LRM  Bates  Bates Merton B/S B/S
Hedging Costs (LVM)  (Delta) (0tot) (op)

(Initial Costs) | (19.00) (20.74)) (20.74) (18.07) (16.73) (11.20)

Mean 18.91 18.86 18.01 17.96 18.08 17.80
Stand. Dev. 4.92 4.95 7.89 8.18 7.41 9.51
Skewness 0.82 0.81 1.55 1.57 1.73 1.51
Kurtosis 3.08 2.80 1.95 1.99 291 1.71
Maximum 55.84 55.46 57.94 59.82 60.73 65.56

99% Quantile 34.31 34.20 43.43 44.41 43.28 48.31
95% Quantile 27.39 27.52 34.66 35.27 33.83 37.79
90% Quantile 24.16 24.40 30.62 30.65 29.36 32.47
75% Quantile 21.28 21.25 21.18 21.85 21.05 23.11
50% Quantile 18.96 18.87 14.79 14.49 14.69 11.76
25% Quantile 15.92 15.82 12.97 12.69 13.57 11.27
10% Quantile 12.95 12.89 11.42 11.48 12.41 11.10
5% Quantile 11.19 11.17 10.60 10.81 11.60 11.00
1% Quantile 8.33 8.33 9.42 9.34 10.02 10.71

Minimum 4.75 4.78 8.24 8.80 7.71 9.52

21Tf no jump occurs, the costs should coincide with the initial costs since only in case of a jump

a hedging error occurs (when ignoring the hedging error due to the discrete rebalancing).
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Figure 8: Distribution of Total Hedging Costs

S=100, K =100, A\=1,k=-0.2, 04,4 =03,y=08,T=1,«a=0.15r=01 R=1.
The heights of the columns give the frequency (in %) that the duplicating costs are
between I' — 0.5 and I' + 0.5. At 47 the frequency that the duplication costs are above
46.5 is depicted.
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5 Conclusion

This paper derives explicitly two formulae for hedging options in a jump diffusion
framework. The first formula is an application of Schweizer’s (1991) LRM approach
while hedging according to the second formula minimizes the local variance of the
hedging error in Bates’ (1991) equilibrium option pricing model. Both hedge formu-
lae consist of a diffusion component and a jump component and thus hedge diffusion
as well as jump risk partly. The value of the LRM hedge portfolio is a weighted sum
of Black/Scholes values. Some of the weighting factors are negative if, for example,
the market price of risk is positive. Negative weighting factors result if the mar-
tingale density is negative with positive probability. In this case the corresponding
martingale measure is not an equivalent martingale measure in contrast to the as-
sumptions of Colwell and Elliott (1993). However, as long as the call value is above
the Black/Scholes value based on the diffusion variance and below the stock price

itself there is no arbitrage opportunity.

We compared the LRM strategy and LVM strategy with delta hedging strategies
in the models of Merton (1976), Black/Scholes (1973), and Bates. Delta hedging
strategies only consist of a diffusion component and thus hedge diffusion risk but do
not hedge jump risk. By numerical analysis we found that the LRM and LVM hedge
ratios are less sensitive to stock price changes than the alternative delta hedging
strategies. Moreover, if the expected excess return is positive and the expected jump
size is significantly different from zero and positive (negative) then the LRM and
LVM hedge ratios are substantially larger (smaller) than delta hedge ratios for out-
of-the-money (in-the-money) calls. We also showed that the worst case behaviour of
the LRM and LVM strategies is superior: The 99%-, 95%-, and 90% quantiles of the

total hedging costs are substantially lower.
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6 Appendix

In the following all integrand processes Z,(,V,V; ... should be regarded at time ¢~
and at Z(t7). But for the sake of simplicity we omit the argument.

Proof of Lemma 1

With the definition of the quadratic covariation, [-,-] (see e.g. Protter (1990, p. 58)
or Jacod/Shiryaev (1987, p. 52)) and since [Z,(] — (Z,() is a local martingale (see
e.g. Protter (1990, p. 98)) we get for the product of ( and Z

dCZ = Zd¢+(dZ +d[Z,()
= Zd¢+CdZ +d[Z,¢) — d{Z,¢) + d{Z,¢)

— 7 { gdW + /(h ~ 1)(dv — H(dy)dt) }
¢ { (a —r)dt + opdW + / y(dv — H(dy)dt) }
12,0~ (2.0)+ 2 { opgdt + [ (1= 1)y (gt
— local martingale + Z¢ { (0 —71)+0opg+ /(h — 1)yH(dy) } dt .

Therefore (Z is a local martingale and ¢ a martingale density if and only if the
last term is a local martingale. But since this is a continuous martingale with finite
variation it follows that this martingale must be constant (see, e.g., Protter (1990,
p. 64) and thus:

{ (a—7) + opg + /(h —1)yH(dy) } iy =0 . (37)

For the Black/Scholes hedge with h = 0 it follows that (o« — r) + opg — Ak = 0
and thus ¢ = —(a — r — Ak)/op. For Merton’s hedge we get h = 1. Consequently
(¢ —7)+o0pg=0and thus g = —(a—1)/0op.
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Proof of Proposition 1

With Ito’s formula as well as d(Z¢,Z¢) = Z?opdt and [yZv(dy,dt) = AZ =
Z(t) — Z(t~) we derive for V

1
dV = Vdt+V.dZ + §vzz220]%dt + AV —V,AZ
= Vidt+V, { (o —r)Zdt +opZdW + /yZ(y(dy, dt) — H(dy)dt) }

1
+§szzza%dt + AV - V,AZ
— ViepZdW + AV (38)
1 2 2
+ { Vit Vil = )7 +5VeZ%0% = V.. | ZyH(dy) } dt

According to the definition of the quadratic covariation, since [V, (] —(V, () is a local
martingale and since [ (V(Z(l +y)) — V(Z))U(dy,dt) = AV =V (t)—V(t") the
product V( equals
dV¢ = Vd¢+¢dV +d[V,(]
= Vd¢+dV +d[V.¢{] —d(V,¢ ) +d(V,¢)
— V¢ + (Viop ZdW + CAV
¢ { Vit Vila = nZ 4+ 320 V. [ Zyti(ay) } de
+d[V, (] = d{V, ()
+{ VzanggdH/g(V(Z(l +9) = V(2))(h - 1) H(dy) | dt
= Vd(+ (ViopZdW

local mgrtingale

+ [V +9) - V(D) - Hdyyin) + V(] - d(v.)

N

local mgrtingale

1
+{ Vit Vila = 1)Z + SV 2P0 + VeanZg — VAZK
+/ (V(Z(+y) - V(Z) ) hH (dy) | dt.
Since (V(); = E(c(BrZr)(r/Br|F;) is a local martingale so must be
' 1 2 2
Vit Vala=1)Z +5V..2%0h + VeopZg — V.AZk

0

+/ (V(2(1+y) = V(2))nH(dy) } at. (39)
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This is a continuous local martingale with finite variation. Therefore it is zero.
Consequently, so is the term in {} if ( # 0. Thus V satisfies the following differential

equation:
1 2 2
Vi+V.(ia—r)z+ 5‘/222 op +V.opzg — V. \zk
+/ (V(z(l +y)) — V(z))hH(dy) =0 (40)

Since ( is a martingale density condition (37) must be satisfied. Inserting this into
equation (40) we get equation (9). On the other hand if we insert equation (9) into
the stochastic differential equation for V', according to (38), we get equation (10).
With V = e " F equation (11) follows. ]

Proof of Lemma 2

We required I' to be orthogonal to the martingale part of the stock price process M.

Since we can put the integrand ¢ in front and since (A, M) = 0 we get

AT, M) = / ¢dZ, M)
= AV, M) — ¢d(Z, M)
= d<v, M> — ¢d(M, M) .

Orthogonality is thus equivalent to

V' is a special semimartingale and can thus be written as

AV = (..)dt+ ‘/ZUDZdW+/ (V(Z(1 +y) — V(Z)) (v(dy, dt) — H(dy)dt)

dAy dve < ~— _
ave

where Ay is a predictable process with finite variation, V¢ is a continuous martingale
and V¢ is a purely discontinuous martingale. We have (Ay, M) = 0. Moreover
the instantaneous variances can be depicted as d(M¢, M¢) = o%Z%dt as well as
d(M*, M?) = 03,,,,Z%dt and d(M, M) = o,,Z*dt. We can therefore write
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d(M°®+ M* Ay +Ve+ VY
d(M, M)
d(Me, V) +d(M* V)
d(M, M)
d(Me, My d{M, Ve (M MY d(M VY
A(M, M)~ d(Me, My " d{M, M) d{M? M%)

T EL(AZAV)
- VT (AzZ))
_ (1-F +7EL(ASAF)

T UE((AS)?)

Proof of and Lemma 3

From equation (16) it follows that I is a (local) martingale if and only if

/ { —V:Z(a—r) - VzZ/(h — 1)y H(dy)
_/ (V(Z(l +y)) - V(Z)> (1=h)H(dy) + ¢(a—1)Z } dt

is a local martingale (since all other terms on the right are local martingale). But

this is a continuous process with finite variation and thus it is equivalent to
0 = {(~Vasla=r) = Vaz [ (b~ DyH(dy)

_/ (VO +9) = V) (=D Hdy) +sa—1)z} . (41)

In addition ¢ should be a martingale density. Thus we have equation (37). Together
with equation (19) we find that the following functions g and h satisfy conditions
(41) and (37) for all options ¢(Sr):

(e —1)op (a—1)y
g = ———=—  h=l-—m—
Oiot Oiot
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Derivation of the locally variance minimizing strategy in Bates’ model

For each hedge ratio ¢ the (discounted) hedging error is
t
Ft:‘/;Ba_%Ba_/ ¢dZ
0

We want to find a strategy such that the local variance d(I", T'); is minimized. Denote
by M(V5*) the martingale part of V?* under the original measure P and by A(V ")
the drift term. The martingale part of I" is denoted by L, it reads

Ly

I, — A(V5"), + /t PpdA
0
= M(VPY), - /t pdM .
0
Since A(VP*) and [ ¢dA are continuous and of finite variation
(L,L) =(I',T).

Therefore mind(I',T") is equivalent to mind(L, L). This is achieved by projecting
M (VP on {[©dM} or equivalently by requiring L to be orthogonal to M. In

analogy to the derivation of the locally risk minimizing strategy we obtain

d{M(VB*), M)
d{(M, M)
d(VBe 7)
d(Z,7)

b =

EL(AVBeAZ)
EL((AZ)?)
EL(AFBP*AS)
EL((AS)?)

= 1=V +7

= (1=MF"+7
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