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Optimal Portfolios with Defaultable Securities

A Firm Value Approach

Abstract: Credit risk is an important issue of current research in fi-

nance. While there is a lot of work on modelling credit risk and on

valuing credit derivatives there is no work on continuous-time portfo-

lio optimization with defautable securities. Therefore, in this paper

we solve investment problems with defautable bonds and stocks. Be-

sides, our approach can be applied to portfolio problems, where the

investor has the opportunity to put her wealth into derivatives with

counterparty risk or credit derivatives.
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1 Introduction

In his pioneering work Merton (1969, 1971) considered an investor who allocates

her wealth in stocks or a riskless money market account. However, the assumption

is made that the interest rates are deterministic and that all assets are free of credit

risk. Relaxing the first point was already addressed by Korn/Kraft (2001). The

second point is rarely treated in literature.1

In this paper we will solve portfolio problems where the investor can put her money

into defaultable assets such as corporate bonds. To model the credit risk we use a

firm value approach which traces back to Black/Scholes (1973) and Merton (1974).

This model which is called Merton’s (firm value) model has the unpleasant feature

that default can only occur at maturity. In contrast to that safety covenants give

the bondholder the right to bankrupt, if the firm is doing poorly according to some

standard. In firm value models this is modelled by a bankruptcy level which can be

time dependent or even stochastic. The firm is forced to bankruptcy if the firm value

falls to the bankruptcy level. This is done in Black/Cox (1976) for deterministic in-

terest rates and in Briys/de Varenne (1997) for stochastic interest rates. Black/Cox

(1976) also consider the case of subordinated bonds and restrictions on the financing

of interest and dividend payments. Multiple further generalizations are addressed in

Geske (1977), Mason/Bhattacharya (1981), Kim/Ramaswamy/Sundaresan (1993),

Leland (1994), Longstaff/Schwartz (1995), Saa-Requejo/Santa-Clara (1999).

The main ingredient of Merton’s model is the firm value. If the firm has not issued

any bonds the firm value would coincide with the value of all stocks. Merton

assumed that the firm additionally issued a zero bond. If the firm value at maturity

is larger than the face value of the bond the stockholders will redeem the bond.

Otherwise, the bond defaults and the firm passes over to the bondholders. Therefore

the zero bond can be interpreted as a portfolio consisting of a cash position equal

to the net present value of the face value and a short position in a put. Its exercise

price is equal to the face value of the bond and the underlying is the firm value.

Also, the share price is then given as a call on the firm value where again the strike

equals the face value of the bond.

Consider a portfolio problem in which the investor can put her money into a stock, a

(defaultable) bond and a riskless money market account. Actually, this means that

the investor has the choice between two derivatives and the money market account.

The main restriction in this problem results from the fact that the capital structure
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is explicitly modelled because the firm value equals the sum of the stock price and

the bond value. Since the number of stock and bond is normalized to unity, the

investor can buy at most one stock and one bond. In the ordinary formulation of

portfolio problems such restrictions are not modelled and it is assumed that the

demand of the investor is lower than the supply of the assets. In fact, there are also

only a finite number of shares issued by a company although in theory no bound

on the number of shares is considered.

The paper is organized as follows: In the next section we will first take up the

simplifying approach of the usual problems and ignore the upper bound on the

amount of stock and bond. This can be justified as a first order approximation for

a small investor whose total wealth will (almost) never be enough to buy the total

number of stocks and bonds. After having solved this problem we will look at the

probability that the solution computed without the above constraints requires to

hold at least one bond or stock of the company. Since the total number of stocks and

bonds is normalized to unity, this means that the investor wants to buy at least the

whole issue of stocks or bonds. In the third section, we solve the general constrained

problem in the case of an investor who maximizes her terminal wealth with respect

to a logarithmic utility function. In the fourth section some of the above mentioned

generalizations of Merton’s model are considered and the corresponding portfolio

problems are solved. The paper concludes with a summary of our findings.

2 Optimal portfolios with defaultable bonds: The

unconstrained case

As mentioned above it is a fact inherent in the Merton firm value model that the

number of bonds and stocks of the issuing company is limited to one. Using the

“small investor assumption” as a justification we will first ignore this fact and

assume that there is no upper bound on the number of bonds and/or stocks.

We have seen that a defaultable bond can be interpreted as a portfolio consiting of

a fixed payment F and a short position in a put with exercise price F . Therefore

the value of the zero bond at maturity TB is given by

B(TB , v) = min{v, F} = F −max{F − v, 0}, v ≥ 0. (1)

The value of the stock equals the value of a call on the firm value with exercise price
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F and maturity TB , i.e.

S(TB , v) = max{v − F, 0}, v ≥ 0. (2)

Throughout the paper we make the assumption that the stock and the bond are

traded continuously on a frictionless market. This does not mean that the in-

vestor may trade both assets, but it simplifies our presentations because then Black-

Scholes-like formulae for the stock and the bond are valid. If one or both of these

assets are not traded, a market price of risk comes into play. Although this would be

an unpleasant feature for contingent claim pricing, it is a usual situation of portfolio

optimization. This is the reason why our assumption is without loss of generality.

Optimizing a portfolio containing defaultable bonds can be considerably simplified if

the elasticity approach to portfolio optimization by Kraft (2001) is used. Basically,

this approach says that the optimal wealth process is determined by an optimal

elasticity which is independent of a special asset. Therefore it consists of a kind

of two-step procedure: First determine the optimal elasticity of the evolution of

the investor’s wealth process (for a given utility function) and then determine the

portfolio process that achieves this elasticity (for a given tradable asset).

Hence, we start with a portfolio problem where the investor can put her wealth into

the firm value and a money market account modelled by the SDE

dV (t) = V (t)
[
αdt + σdW

]
, V (0) = v0, (3)

dM(t) = M(t)rdt, M(0) = 1. (4)

The variable M denotes the value of the money market account and V the firm value

which has a constant drift α and a constant volatility σ. Here and in the following

W stands for a Brownian motion defined on a filtered probability space (Ω,F , P ).

The filtration {Ft}t≥0 is the usual P -augmentation of the natural filtration of W .

In this section W is one dimensional. The variable r stands for the short rate which

is held constant to simplify matters. Let λ := α− r be the excess return of the firm

value.

Actually, the firm value is a non-traded asset. However, the elasticity approach tells

us that we can solve the portfolio problem with the two investment opportunities

V and M , and then compute how the optimal wealth process can be achieved by

investing in the tradables, i.e. in the stock or bond issued by the company. As a

consequence, we look at the following wealth equation2

dX(t) = X(t)
[
(r + πV λ)dt + πV σdW

]
, (5)
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X(0) = x0, where X denotes the investor’s total wealth and πV stands for the

percentage of the total wealth put into the firm value.

The classical examples for the portfolio problem

max
π

E(u(Xπ(T ))) (6)

are the choices of u(x) = ln(x) or u(x) = γ−1xγ . The variable T denotes the invest-

ment horizon. We assume that T < TB which means that during the investment

period [0, T ] a default cannot occur. Of course, a low firm value indicates a high

probability of default and a low bond price. In a latter section this assumption will

be relaxed.

The optimal portfolio processes for (6) are well-known from the seminal papers by

Merton (1969, 1971).

Proposition 2.1 (Merton’s portfolio problem)

(i) For the logarithmic utility function u(x) = ln(x) the optimal portfolio process

π∗V for (6) is given as

π∗V (t) =
λ

σ2
(7)

(ii) For the power utility function u(x) = γ−1xγ , γ < 1, γ 6= 0, the optimal portfolio

process π∗V for (6) is given as

π∗V (t) =
λ

(1− γ) · σ2
(8)

However, the firm value V shall not be tradable but claims on the firm value are.

Although their prices are both non-linear functions of the firm value we can still

use the results of the above Proposition to obtain the optimal wealth process. To

demonstrate this idea assume that the investor can additionally invest her money

in a contigent claim C(t) = C(t, V (t)) on the firm value. An application of Ito’s

rule and of the Black-Scholes partial differential equation results in the SDE

dC(t) = (rC + CvV λ)dt + CvV σdW (t) (9)

for the price of the claim. Here, Cv denotes the partial derivation of C(t, v) with

respect to the firm value. The wealth equation of this portfolio problem is given by

dX(t) = X
[
(r + (πV + πCC−1CvV )λ)dt + (πV + πCC−1CvV )σdW

]
(10)

where πV denotes the percentage invested in the claim. This equation involves the

elasticity of the claim with respect to the firm value which is defined by

εC =
dC/C

dV/V
:=

CvV

C
. (11)
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Note that for the corresponding elasticity of the firm value and the money market

account we have εV ≡ 1 and εM ≡ 0, respectively. Therefore the term

ε := πV + πCC−1CvV = πV εV + πCεC (12)

coincides with the static elasticity of the investor’s portfolio.3 Using this result the

wealth equation simplifies to

dX = X
[
(r + ελ)dt + εσdW

]
. (13)

In this formulation the static portfolio elasticity ε is the control variable of the

portfolio problem. Note that ε does not depend on a special asset. Since the wealth

equations (5) and (13) only differ with respect to the notation of the control variable

investment problems with contingent claims of the form C(t) = C(t, V (t)) can be

solved as if the portfolio only contains the firm value and a cash position. This

simple case is called a reduced portfolio problem. For example, if the investor max-

imizes her terminal utility at time T with respect to a logarithmic utility function

u(x) = ln(x), x > 0, the above proposition yields that the optimal elasticity reads

as

ε∗(t) =
1

1− γ

λ

σ2
. (14)

Hence, any combination of firm value and claim which leads to the optimal elasticity

ε∗ can be choosen to achieve the optimal wealth process. This is the main result of

the second step of the elasticity approach. Formally, we get that (πV , πC) has to

be selected such that

ε∗(t) = πV (t) + πC(t) · εC(t). (15)

As in our case, the firm value V is not tradable, we must have πV ≡ 0, hence

ε∗(t) = πC(t) · εC(t) (16)

or

π∗C(t) =
ε∗(t)
εC(t)

. (17)

Since the stock and the bond in Merton’s model are contingent claims on the firm

value we obtain the following proposition:

Proposition 2.2 Consider the portfolio problem (6) and Merton’s firm value model.

(i) If the investor is only allowed to invest into the money market account M and
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the stocks S of the company then the optimal stock portfolio process π∗S is given by

π∗S(t) =





λ
σ2 · S(t)

Sv(t)·V (t) = λ
σ2 · S(t)

N (d1(t))·V (t) if u(x) = ln(x),

λ
(1−γ)σ2 · S(t)

Sv(t)·V (t) = λ
(1−γ)σ2 · S(t)

N (d1(t))·V (t) if u(x) = 1
γ xγ ,

(18)

where S denotes the stock price in the Merton’s model, i.e

S(t) = V (t) · N (d1(t))− Fe−r(T−t)N (d2(t)) (19)

with

d1(t) =
ln(V (t)

F ) + (r + 0.5σ2)(T − t)
σ
√

T − t
, (20)

d2(t) = d1(t)− σ
√

T − t, (21)

and where N denotes the cumulative standard normal distribution function.

(ii) If the investor is only allowed to invest into the money market account M and

the bonds B issued by the company then the optimal bond portfolio process π∗B is

given by

π∗B(t) =





λ
σ2 · B(t)

Bv(t)·V (t) = λ
σ2 · B(t)

N (−d1(t))·V (t) if u(x) = ln(x),

λ
(1−γ)σ2 · B(t)

Bv(t)·V (t) = λ
(1−γ)σ2 · B(t)

N (−d1(t))·V (t) if u(x) = 1
γ xγ ,

(22)

where B denotes the bond price in Merton’s model, i.e

B(t) = V (t) · N (−d1(t)) + Fe−r(T−t)N (d2(t)) (23)

with d1 and d2 as in (i).

(iii) If the investor can put her wealth into the stock, the bond, and the money

market account then every portfolio process (πS , πB) is optimal which matches the

optimal elasticity, i.e.

ε∗ = πS · εS + πB · εB . (24)

Hence, the optimal strategy is not uniquely determined.

Proof. The proof is a direct consequence of Proposition 1, the form of the optimal

elasticity ε∗ in (17) and the price formulae for both stock and bond issued by the

company. 2

Remarks:

a) The above way of using elasticities generalizes ideas given in Korn/Trautmann

(1998) to solve optimal portfolio problems with options.
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b) We only choose the logarithmic and the power utility function for expositional

convenience. Clearly, the results of the proposition are neither restricted to these

utility functions nor to the maximation of terminal utility. The only ingredient

that is needed is the optimal elasticity. As a consequence, the results hold for

every utility function considered in Merton (1969,1971), Cox/Huang (1989, 1991)

or Karatzas/Lehoczky/Shreve (1987).

c) By comparing the actual amount of money invested in the risky asset as computed

in Proposition 1 and 2 we find

π∗V ·X∗ =
λ

σ2
X∗ >

λ

σ2

B

BvV
X∗ = π∗B ·X∗ (25)

Thus, the optimal amount of money invested in the risky asset will always be lower

if we trade in the bond of the company than if we would be able to trade the firm

value. Therefore there is less money under default risk which seems to be a desirable

feature. The same result holds for the stock S.

There remains to demonstrate that - given the investor’s initial wealth is not too

large - the original - but temporarily ingored - constraint on the number of stocks

issued by the company can approximately be ignored. We first start with the

problem when the investor can actually create a situation where she can “trade”

the firm value by investing in both stock and bond and using the equation

V (t) = S(t, V (t)) + B(t, V (t)), (26)

which we call accounting equation.

Proposition 2.3 (Relevance of the bound) Let x0 > 0 be the initial wealth of

the investor who maximizes terminal wealth with respect to the power utility function

u(x) = γ−1xγ . Further, assume that

λ

(1− γ)σ2
≤ v0

x0
, (27)

i.e. at time t = 0 the investor does not want to buy more securities than issued.

Then the probability that the optimal fraction of her wealth never exceeds the firm

value V before T is given by

N
( ln(c)− aT

|b|√T

)
− c

2a
b2N

(− ln(c)− aT

|b|√T

)
(28)

with

a = −λ + 0.5
(
σ2 +

λ2

(1− γ)σ2

)
, b =

λ

(1− γ)σ
− σ, c =

σ2v0(1− γ)
λx0

. (29)
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In the case of a logarithmic utility function u(x) = ln(x) the result is still valid with

γ = 0.

Proof. As we have

V (t) = v0 · exp
(
(r + λ− 0.5σ2)t + σW (t)

)
(30)

X∗(t) = x0 · exp
(
(r + 0.5λ2

σ2 )t + λ
σ W (t)

)
(31)

the above probability is in the case of u(x) = ln(x) given by the probability

P
(

λ
σ2 X∗(t) < V (t) ∀ t ∈ [0, T ]

)

= P
(

max
0≤t≤T

λ
σ2

x0
v0

exp
(
0.5[λ2

σ2 + σ2 − 2λ]t + [λ
σ − σ]W (t)

)
< 1

)

= P
(

max
0≤t≤T

[−λ + 0.5(σ2 + λ2

σ2 )︸ ︷︷ ︸
=a

]t + [λ
σ − σ︸ ︷︷ ︸

=b

]W (t) < ln(σ2v0
λx0︸︷︷︸
=c

)
)

= P
(

max
0≤t≤T

at + |b|W (t) < ln(c)
)

= P
(

max
0≤t≤T

a
|b| t + W (t) < ln(c)

|b|
)

= N
( ln(c)− aT

|b|√T

)
− c

2a
b2N

(− ln(c)− aT

|b|√T

)
(32)

Note that bW and |b|W have the same distribution. The last equation follows from

Korn/Korn (2001, p. 168) and is thus a consequence of the reflection principle. The

computations for the case of u(x) = γ−1xγ are similar. 2

Remarks:

a) It can be shown that for x0/v0 → 0 which is the typical situation for a small

investor the above probability approaches one quite fast. In table 1 there are some

numerical values which illustrate this. We have used α = 0.15, r = 0.05, σ = 0.2,

and γ = 0. Thus, in the class relevant for a small investor, i.e. x0/v0 ≤ 0.01, the

bound on available numbers of bond and stock is virtually irrelevant.

b) If however we think of big funds investing in the particular company then the

above numbers also indicate that the constraints on the number of bonds and stocks

cannot be ignored. We therefore consider such a constrained problem in the next

section.

[Insert table 1]

The above proposition is only valid in the case where we can trade in both stocks

and bonds of the issuing company. If we are only trading in either the stock or the

bond then of course the probability increases that the constraints will be binding.
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However, as both bond and stock prices are non-linear functions of the firm value,

we cannot expect a closed form solution for the corresponding probabilities such

as in the case considered in the proposition. To illustrate the behaviour of these

probabilities we give some results obtained via Monte Carlo simulation. As above

we have used α = 0.15, r = 0.05, σ = 0.2, γ = 0, v0 = 1000, and F = 750. Besides,

it has been assumed that the maturity of the coporate securities lies one year after

the investment horizon.

[Insert table 2]

Note that the capital structure of the firm - represented by the face falue F of the

bond - becomes relevant, if the investor is only permitted to put her wealth in one

of the corporate securities. Since only trading in the stock leads to similar results as

before - in fact, every probability in the table 2 would be almost one - we omit the

corresponding table. In contrast to this results a restriction to defaultable bonds

heavily increases the probability of touching the barrier. The reason is as follows:

Given an investor who only puts her wealth in corporate bonds or the money market

account then her demand of bonds is only lower than the supply if4

1
1− γ

λ

Bvσ2
≤ V

X
. (33)

Omitting discounting a face value of F = 750 and an initial firm value of v0 = 1000

results in an equity ratio of 25%, which seems to be a realistic value. But in this

case the put inherent in the bond is nearly worthless and the bond is nearly riskless.

This leads to a delta of the bond which is almost zero. Hence, an investor, who

wants to take an optimal risky position given by Merton’s result, has to buy a

large number of bonds. Therefore the upper bound on the number of bonds will be

violated. This can be seen in inequality (33), where the delta of the bond stands

in the denominator of the fraction on the left side. In contrast to that the delta of

the stock is almost one, because the stock corresponds to a call, which is deeply in

the money. Hence, investing in the stock leads to a substantially lower probability

that the bound is touched.

We end this section with examples of defaultable assets where it suffices to consider

the unconstrained case. Johnson/Stulz (1987) investigated assets with counterparty

risk as for example vulnerable options. The model which they used is similar to

Merton’s model as they assume that the value of a vulnerable call at maturity is

given by

C̃(T ) = min{Ṽ (T ),max{S̃(T )−K, 0}}, (34)
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where Ṽ denotes the value of the assets of the call writer and S̃ the stock price.

Note that the stock price here is not a contingent claim on a firm value but an

originary asset as in Black/Scholes (1973) or Merton (1973) with the dynamics

dS̃ = S̃
[
α̃dt + σ̃dW

]
, S̃(0) = s̃0. (35)

Therefore one has to distinguish between the firm value V and the stock price

S in Merton’s model and the variable Ṽ and the stock price S̃ in Johnson/Stulz

(1987). Besides, it is important to note that in the present setting there is no link

between the assets of the call writer and the number of calls written on the stock

S̃. Therefore, the important but inconvenient feature of Merton’s model that the

number of bonds and stocks is bounded - this would correspond to bounds on the

number of vulnerable calls - is not present in the model by Johnson/Stulz (1987).

Consider an investor with a power utility function who can put her money into

a money market account or a vulnerable call. Her optimal fraction invested in a

vulnerable call is given by

π∗
C̃

(t) =
1

1− γ

λ̃

σ̃2

1
εC̃(t)

. (36)

In general, there exists no closed-form solution for the price C̃ of a vulnerable

call. Nevertheless, our result stays valid, but one has to compute the elasticity

εC̃ numerically. For the special case of covered call writing, which means that

Ṽ (t) = ρ · S̃(t), 0 < ρ < 1, Johnson/Stulz (1987) gave a closed-form solution which

reads as5

C̃(0) = C(S̃(0),K)− (1− ρ) · C(S̃(0),K/(1− ρ)), (37)

where C(s,K) denotes the ordinary Black-Scholes price of a call with strike price

K given that the stock price equals s. Hence, we have

∂C̃(t)
∂S̃

= N (d′1(t))− (1− ρ) · N (d′′1(t)) (38)

with

d′1(t) =
ln( S̃(t)

K ) + (r + 0.5σ̃2)(T − t)
σ̃
√

T − t
, d′′1(t) =

ln( (1−ρ)S̃(t)
K ) + (r + 0.5σ̃2)(T − t)

σ̃
√

T − t
.

(39)

Using this result the optimal fraction invested in the vulnerable option has the

following form

π∗
C̃

(t) =
1

1− γ

λ̃

σ̃2

S̃(t)
C̃(t) · (N (d′1(t))− (1− ρ) · N (d′′1(t)))

. (40)
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Note that the optimal fraction is positive. Clearly, analoguous results can be calcu-

lated in the model by Hull/White (1995), who were able to prove a Black-Scholes-like

formula for vulnerable options in a special case of their model.

Another important example of defaultable claims for which no restrictions has to

be considered are credit derivatives.

3 Optimal Portfolios with defaultable Bonds: The

Constrained Case

As already announced, we now consider Merton’s firm value model including all the

constraints on the number of bonds and shares issued by the company. Denoting the

number of stocks and bonds in the investor’s portfolio with ϕS and ϕB , respectively,

this will lead to the restrictions

|ϕS(t)| ≤ 1 and |ϕB(t)| ≤ 1. (41)

If short sales are prohibited these restrictions reads as

0 ≤ ϕS(t) ≤ 1 and 0 ≤ ϕB(t) ≤ 1. (42)

Note that we have normalized the number of shares and bonds issued by the com-

pany to unity. Since

ϕS =
πS ·X

S
and ϕB =

πB ·X
B

, (43)

where X denotes the total wealth of the investor, we get

|πS | ≤ S

X
and |πB | ≤ B

X
(44)

or

0 ≤ πS ≤ S

X
and 0 ≤ πB ≤ B

X
, (45)

respectively. Hence, the portfolio process (πS , πB) is bounded by a stochastic pro-

cess which itself depends on the control. Such boundaries even do not fall in the

classes treated by Karatzas/Cvitanic (1992). Obviously, these boundaries will be

restrictive if the investor’s wealth is large enough. Without loss of generality we

concentrate on the case when short sales are prohibited.

As before we consider a portfolio problem in which the investor can put her money

into a riskless money market account M , a stock S, and/or a (defaultable) bond
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B. However, we restrict to the case of an investor who maximizes her terminal

wealth up to time T , T < TB , with respect to a logarithmic utility function. To

solve the problem we use the elasticity approach. Hence, the wealth equation has

the following form

dX(t) = X(t)
[
(r + ε(t)λ)dt + ε(t)σdW (t)

]
. (46)

Recall that the elasticities of the stock and the bond are

εS =
∂S

∂V

V

S
= N (d1) · V

S
, εB =

∂B

∂V

V

V
= N (−d1) · V

B
. (47)

If the investor can trade in the stock and in the bond, at time t ∈ [0, T ] she can

attain any elasticities ε(t) with

ε(t) = πS(t) · εS(t) + πB(t) · εB(t) (48)

where the restrictions (45) concerning the portfolio process π = (πS , πB) have to

be observed. Plugging (43) in (48) leads to

ε(t) = V (t)
X(t)

(
ϕS(t)Sv(t) + ϕB(t)Bv(t)

)
(49)

As Sv, Bv > 0 the investor can achieve elasticites ε(t) which belong to the following

intervall

[0, V (t)
X(t) (Sv + Bv)] = [0, V (t)

X(t) ]. (50)

Note that the equality results from the accounting equation S + B = V . Hence, we

have to solve the following optimization problem, where A(0, x0) denotes the set of

all admissible controls6 given the initial condition (0, x0)

max
ε(·)∈A∗

B
(0,x0)

E(lnXε(T )) (51)

with
dXε(t) = Xε(t)

[
(r + ε(t)λ)dt + ε(t)σdW (t)

]
, (52)

Xε(0) = x0 (53)

and

A∗B(0, x0) :=
{

ε(·) ∈ A(0, x0) : Xε(t) ≥ 0 and ε(t) ∈ [0,U(t)] for t ∈ [0, T ]
}

, (54)

where U denotes an adapted upper bound for the attainable elasticities. As shown

above, we have U(t) = V (t)/Xε(t), if the investor can trade in both stocks and

bonds. To point out the dependency of X on ε we have writen Xε. In the following,

as before, we will mostly omit the superindex. It is important to mention that the
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special form of the coefficients in the wealth equation will guarantee the positivity

of Xε(t).7 Besides, the reader should be aware of the fact that in the present setting

the unconstrained optimal elasticity is not always attainable. To emphasize this we

call the elasticity which solves the optimisation problem (51) the optimal attainable

elasticity.

The following proposition gives the solution to the problem (51). Hence, the first

step of the elasticity approach is taken.

Proposition 3.1 (Optimal Elasticity in the Merton Model) Consider the

portfolio problem (51) and Merton’s firm value model. Then the optimal attain-

able elasticity reads as follows

ε∗(t) =





λ
σ2 , if U(t) ≥ λ

σ2 ,

U(t), if U(t) < λ
σ2 .

(55)

Proof. The solution to the wealth equation (46) is given by

X(t) = x0 · exp
( ∫ t

0

r + ε(s)λ− 0.5ε2(s)σ2 ds +
∫ t

0

ε(s)σ dW (s)
)
. (56)

Hence, the investor’s expected terminal utility reads as

E(lnX(T )) = ln x0 + rT + E
( ∫ t

0

ε(s)λ− 0.5ε2(s)σ2 ds
)
. (57)

Note that due to the boundedness of ε(·) the expectation of the Ito integral vanishes.

Completing the square in the above integrand leads to

E(lnX(T )) = ln x0 + rT + 0.5λ2

σ2 T − 0.5 · E
( ∫ t

0

[
ε(s)σ − λ

σ

]2

ds
)

(58)

= ln x0 + rT + 0.5λ2

σ2 T − 0.5σ2||ε− λ
σ2 ||2, (59)

where || · || denotes the norm of the space L2. Therefore, the utility reaches a

maximum when the norm is minimal. Using an orthogonal projection argument

the norm becomes minimal if

|ε(t)− λ
σ2 | (60)

reaches its minimum at each time instant t ∈ [0, T ]. Since ε(t) ∈ [0,U(t)], this leads

to (55). Note in particular that X(t) does not dependent on ε(t). 2

Remark:

a) We want to point out that the orthogonal projection argument in the above proof

does not work if we assume that the preferences of the investor are governed by a
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power utility function as then the corresponding integrand is not independent of

the wealth process X itself.

b) The above result does not only seem to be intuitive, it can also be applied to

very general upper bounds which can even be dependent on the control ε itself.

By specifying the upper bound U the optimal portfolio processes with defaultable

securities can be computed. This corresponds to the second step of the elasticity

approach. The respective results are summerized in the following corollary.

Corollary 3.1 (Optimal Portfolios in the Merton Model)

(i) If the investor may put her money into the riskless money market account and

the stock then we have U(t) = V (t) · Sv(t)/X(t). The optimal fraction invested in

the stock is uniquely determined and equal to

π∗S(t) =
ε∗(t)
εS(t)

=





λ
σ2

S(t)
V (t)Sv(t) , if V (t)

X(t)Sv(t) ≥ λ
σ2 ,

S(t)
X(t) , if V (t)

X(t)Sv(t) < λ
σ2 ,

(61)

where Sv = N(d1).

(ii) If the investor may put her money into the riskless money market account and

the defaultable bond then the we have U(t) = V (t)·Bv(t)/X(t). The optimal fraction

invested in the bond is uniquely determined and equal to

π∗B(t) =
ε∗(t)
εB(t)

=





λ
σ2

B(t)
V (t)Bv(t) , if V (t)

X(t)Bv(t) ≥ λ
σ2 ,

B(t)
X(t) , if V (t)

X(t)Bv(t) < λ
σ2 ,

(62)

where Bv = N(−d1).

(iii) If the investor is allowed to split up her money in the riskless money market

account, the defaultable bond, and the stock then U(t) = V (t)/X(t). The optimal

portfolio process is not uniquely determined, but every combination of stock and

bond is optimal which leads to optimal elasticity.

Proof. (i) Since the investor can only put her money into the money market

account and the stock, the attainable elasticities are given by

ε(t) =
V (t)
X(t)

ϕS(t)Sv(t), 0 ≤ ϕS ≤ 1. (63)

Therefore we get U(t) = V (t) · Sv(t)/X(t). Inserting the definition of ϕS in (63)

leads to (61).
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As equation (63) can uniquely be solved for ϕS the equation (61) is proved.

(ii) The proof of (ii) is similar to the proof of (ii).

(iii) The upper bound follows from (50). Since there is one degree of freedom in

solving the equation (49), the portfolio process is not uniquely determined. 2

Remark: The situation described in (iii) has a nice geometric interpretation. The

optimal combinations of stock and bond lie on the straight line G given by

πS = 1
εS

(
λ
σ2 − πBεB

)
, (64)

whereas the range of an attainable strategy (πS , πB) corresponds to the rectangle

R := [0, S
X ]× [0, B

X ]. (65)

Hence, the unconstrained optimal elasticity λ/σ2 is attainable, if the straight line

and the rectangle have at least one point in common, i.e. G ∩ R 6= ∅.

As mentioned in the last section, the ratio v0/x0 between the initial firm value and

the initial wealth of the investor is crucial for the relevance of the restriction. An

investor, who has a lot of funds to invest - i.e. her initial wealth is large -, will not be

able to buy a position which perfectly tracks the unconstrained optimal elasticity.

Hence, a tracking error occurs. Clearly, this problem will be less servere if the

firm value of the company becomes larger. Nevertheless, the restricions cannot be

neglected in the case of well funded investment funds. Although we have assumed

that all investors are price takers it is reasonable to conclude that such a situation

will lead to increasing prices of the traded firm securities. This can be seen as

one explanation of the bubble which has arised e.g. at the American NASDAQ or

the German Neuer Markt. Obviously, in these market segments default risk is an

important issue which has to be taken into account. But it does not seem to be a

tenable assumption that default can only occur after the investment horizon. We

address this point in the next section.

4 Generalizations of Merton’s model

In this section we make the same main assumptions as in the last one. Especially,

we consider an investor with a logarithmic utility function. Besides, it is assumed

for convenience that risk-neutral valuation formulae for the securities issued by the

firm are valid. However, we look at some generalizations of Merton’s model.
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4.1 Black-Cox Model

In contrast to Black/Scholes (1973) and Merton (1974), Black/Cox (1976) consider

the impact of safety covenants on the value of the firm’s securities. This contractual

provision gives the bondholder the right to trigger default when the firm value

touches a lower bound

L(t) = k · e−κ(TB−t) (66)

with constants k, κ > 0. Let τ := inf{t ≥ 0 : V (t) = L(t)} be the corresponding

stopping time. If the default event occurs during the life of the bond the bondhold-

ers immediately obtain the ownership of the firm’s whole assets. Otherwise, the

terminal value of the bond is identical to the value in Merton’s model. Hence, the

defaultable bond corresponds to a portfolio of barrier derivatives with the curved

boundary L and a maturity equal to the maturity TB of the bond. More precisely,

the corporate bond has the following value at TB

B(TB , V (TB)) = F · PDO(TB)−max{F − V (TB), 0}DO + H(TB), (67)

where PDO denotes a down-and-out bond with knock-out barrier L and H a cash-

at-hit option which will pay the firm value if the barrier is touched, i.e. H(τ) =

k · e−κ(TB−τ) given that τ < TB . The second term stands for a down-and-out

put. If the down-and-out properties are neglected, the first two terms are equal

to the final bond value in Merton’s model. However, the last term is new. The

reader should be aware of the difference between a down-and-in bond and cash-at-

hit option. Whereas the first leads to a constant payment at maturity, if a barrier

is touched during the life of down-and-in bond, the second immediately pays a

constant ammount which leads to the final value

H(TB) =





k · e(r−κ)·(TB−τ) if τ < TB ,

0 if τ > TB .

(68)

As a consequence, the cash-at-hit option only corresponds to a down-and-in bond,

if r = κ, i.e. if the growth rate of the boundary equals the compounding rate of the

riskless money market account. In this special case the stochastic payment date of

the cash-at-hit option is irrelevant. We call L(t) = ke−r(TB−t) a discounted barrier.

For k ≤ F the value of the bond at time t ∈ [0, min{TB , τ}] is given by8

B(t) = Fe−r(TB−t)
[
N (z1(t))− y2θ−2(t)N (z2(t))

]
(69)

+V (t)
[
N (−z3(t)) + y2θ(t)N (z4(t))

]
,

16



where

z1/3(t) =
ln(V (t)

F ) + (r ∓ 0.5σ2)(TB − t)
σ
√

TB − t
, (70)

z2/4(t) =
ln(V (t)

F ) + 2 ln(y(t)) + (r ∓ 0.5σ2)(TB − t)
σ
√

TB − t
, (71)

y(t) = ke−κ(TB−t)/V (t), and θ = (r − κ + 0.5σ2)/σ2. As in the former sections,

the elasticity of the bond plays an important role for the optimal portfolio process.

Therefore we have to compute the derivative of the bond value with respect to the

firm value. Rearranging of (69) leads to a representation which proves very useful

for these matters:

B(t) = Fe−r(TB−t) −
[
Fe−r(TB−t)N (−z1(t))− V (t)N (−z3(t))

]

︸ ︷︷ ︸
Merton’s bond price

(72)

+y2θ−2(t)
[
V (t)y2(t)N (z4(t))− Fe−r(TB−t)N (z2(t))︸ ︷︷ ︸

=C(t)

]
. (73)

The bond price equals the sum of the bond price in Merton’s model, which itself is

the difference between a put price and the price of a riskless bond, and a correction

term, which is equal to a number of calls with the fictitious underlying V (t)y2(t).

The corresponding call value is denoted by C.

Hence, the derivative of the bond with respect to the firm value is given by

Bv(t) = N (−z3(t))− y2θ(t)
[

2θ−2
V (t)y2(t)C(t) +N (z4(t))

]
. (74)

The first term corresponds to the derivative in Merton’s model the second term is

a correction due to the safety covenant. It can be shown that this derivative is

positive and smaller than one.

If the lower bound is not reached, the value of the stocks at maturity TB of the

corporate bond is equal to the value in Merton’s model, otherwise the value equals

zero. Hence, we get

S(t, V (t)) = max{V (t)− F, 0}DO, (75)

i.e. the stock price equals the price of a down-and-out call. As we have that

0 ≤ Bv ≤ 1, the accounting equation leads to 0 ≤ Sv ≤ 1.

As in Merton’s model the bond price corresponds to a portfolio of derivatives.

Equivalentely, the stock is modelled as a single derivative. Hence, an investor will

try to track an optimal (attainable) elasticity. However, if the firm is triggered to

default before the investment horizon T , the firm assets are handed over to the

bondholders. Given that they only want to invest in bonds they are forced to
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invest the proceeds in the money market account. Therefore, the only attainable

elasticity after default is equal to zero. Keeping this in mind the portfolio problem

of an investor reads as

max
ε(·)∈A′

B
(0,x0)

E(lnXε(T ))} (76)

with
dXε(t) = Xε(t)

[
(r + ε(t)λ)dt + ε(t)σdW (t)

]
, (77)

Xε(0) = x0 (78)

and

A′B(0, x0) :=
{

ε(·) ∈ A∗(0, x0) : ε(t) = 0 ∀ t ∈ [τ, T ]
}

. (79)

Note that the elements of A′B(0, x0) are processes which are killed at the stopping

time τ . Hence, A′B(0, x0) ⊂ A∗B(0, x0), which implies that all elements of A′B(0, x0)

are admissible controls. We want to emphasize that the partial derivatives of both

stock and bond with respect to the firm value are positive. Hence, only positive

elasticities are attainable. The solution to this problem is given in the following

proposition:

Proposition 4.1 (Optimal elasticity in the Black-Cox Model)

Consider the portfolio problem (76) and the Black-Cox model. Then the optimal

attainable elasticity is equal to

ε∗(t) =





λ
σ2 , if τ > t and U(t) ≥ λ

σ2 ,

U(t), if τ > t and U(t) < λ
σ2 ,

0, if τ ≤ t.

(80)

Proof. Similar arguments as in the proof of proposition 3.1 apply. 2

Since the investor has a logarithmic utility function we can apply a pointwise maxi-

mation argument. Hence, for the optimality of an elasticity up to a possible default

it is irrelevant, if/when a default occurs. As a consequence, the portfolio stays op-

timal regardless, whether the firm is liquidated after default or it is taken over or

it is reorganized and new tradable stocks are issued etc. This is the reason, why it

suffices to consider the optimization problem (76), where the attainable elasticity

ε is killed after default. Without this independence one has to take into account,

whether there are any firm securities after default which the investor can trade.

Using this result of proposition 4.1 we can solve for the optimal portfolio fractions:
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Corollary 4.1 (Optimal portfolios in the Black-Cox Model)

(i) If the investor may put her money into the riskless money market account and

the stock then we have U(t) = V (t) · Sv(t)/X(t), 0 ≤ t < τ . The optimal fraction

invested in the stock is uniquely determined and equal to

π∗S(t) =
ε∗(t)
εS(t)

=





λ
σ2

S(t)
V (t)Sv(t) , if τ > t and V (t)

X(t)Sv(t) ≥ λ
σ2 ,

S(t)
X(t) , if τ > t and V (t)

X(t)Sv(t) < λ
σ2 ,

0, if τ ≤ t,

(81)

where Sv(t) = N (z3(t)) + y2θ(t)
[

2θ−2
V (t)y2(t)C(t) +N (z4(t))

]
.

(ii) If the investor may put her money into the riskless money market account and

the defaultable bond then the we have U(t) = V (t) · Bv(t)/X(t), 0 ≤ t < τ . The

optimal fraction invested in the bond is uniquely determined and equal to

π∗B(t) =
ε∗(t)
εB(t)

=





λ
σ2

B(t)
V (t)Bv(t) , if τ > t and V (t)

X(t)Bv(t) ≥ λ
σ2 ,

B(t)
X(t) , if τ > t and V (t)

X(t)Bv(t) < λ
σ2 ,

0, if τ ≤ t,

(82)

where Bv(t) = N (−z3(t))− y2θ(t)
[

2θ−2
V (t)y2(t)C(t) +N (z4(t))

]
.

(iii) If the investor is allowed to split up her money in the riskless money market

account, the defaultable bond, and the stock then U(t) = V (t)/X(t), 0 ≤ t < τ . The

optimal portfolio process is not uniquely determined. Every combination of stock

and bond is optimal which leads to optimal elasticity.

Remark: To motivate the elasticity approach we assumed the validity of the Black-

Scholes partial differential equation. Note that barrier derivatives meet this equa-

tion up to the stopping time τ . This is the reason why the elasticity approach is

still applicable in the Black-Cox model.

As mentioned in the introduction Black/Cox (1976) also considered the case of

subordinated bonds (syn. junior bonds). Since the value of such corporate bonds

can be expressed as the difference between the value of two senior bonds, a junior

bond also corresponds to a contingent claim on the firm value. Therefore a portfolio

problem with junior bonds can be treated as before.
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4.2 Generalized Briys-de Varenne Model

One shortcoming of the Black-Cox model results from their assumption that the

interest rates are deterministic although corporate bonds are significantly influenced

by interest rate risk.9 To overcome this drawback Briys/de Varenne (1997) modelled

a stochastic short rate using an extended Vasicek model. Clearly, this restriction

is made to get closed-form solutions for the values of the firm securities. Since we

do not need this assumption, we simply assume that the dynamics of the short rate

are governed by

dr(t) = a(t)dt + b(t)dWr(t), r(0) = 0, (83)

where with a slight abuse of notation the drift a(t) = a(t, r(t)) and the volatil-

ity b(t) = b(t, r(t)) are measurable and sufficiently integrable, so that the SDE

(83) has a unique solution.10 Hence, the models by Vasicek (1977), Dothan (1978),

Cox/Ingersoll/Ross (1985), Ho/Lee (1986), and Black/Derman/Toy (1990) are gov-

erned as special cases. Additionally, let b 6= 0 almost surely.

The dynamics of the firm value are modelled by

dV (t) = V (t)
[(

r(t) + λV (t)
)
dt + σV (t)dWV (t) + σr(t)dWr(t)

]
, (84)

where the processes λV (t) = λV (t, V (t), r(t)), σV (t) = σV (t, V (t), r(t)), and σr(t) =

σr(t, V (t), r(t)) are measurable and sufficiently integrable, so that the SDE has a

unique solution. Besides, let σV and σr be bounded away from zero.

As Black/Cox (1976), Briys/de Varenne (1997) allow for immediate default if a

lower (discounted) boundary

L(t) = k · F · P (t, TB) (85)

is reached, where P (t, TB) denotes the price of a riskless bond with maturity TB at

time t. If there does not occur a default prior to time TB , it is assumed that the

corporate bond has the same value as in the Merton or the Black-Cox model. Note

that for deterministic interest rates the above boundary is equal to kFe−r(TB−t)

which corresponds to a special case of the default boundary in the Black-Cox model.

Hence, the value of the corporate bond can now be expressed as the value of a

portfolio consisting of a down-and-out put, a down-and-out bond, and a down-and-

in bond. More precisely, the value of the defaultable bond at time TB is given

by11

B(TB , V (TB)) = F · PDO(TB)−max{F − V (TB), 0}DO + k · F · PDI(TB), (86)
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where PDI denotes a down-and-in bond with knock-in barrier L. Recall that in

the case of a discounted barrier the value of a cash-at-hit option and a down-and-in

bond coincide. Besides, we have PDO(TB) = I(τ > TB) and PDI(TB) = I(τ ≤ TB),

where I(E) denotes the indicator function for E and τ = inf{t ≥ 0 : V (t) = L(t)}.
The stock price at maturity TB of the corporate bond reads as

S(TB , V (TB)) = max{V (TB)− F, 0}DO, (87)

i.e. the stock is identical to a down-and-out call with a discounted barrier. Since

both stock and bond are contingent claims depending on the firm value V and the

short rate r, we proceed by extending the elasticity approach to stochastic interest

rates. In the last sections we saw that the elasticity of the contingent claims with

respect to firm value plays an important role. Now, a second Brownian motion

has entered the stage, namely the one which governs the interest rate risk. As

a consequence, the sensitivity of a claim with respect to interest rate risk should

become relevant. This sensitivity is known as the duration of the claim and is

defined by DC = Cr/C.12

Keeping this in mind we consider a contingent claim C(t) = C(t, V (t), r(t)). Ap-

plying Ito’s lemma we get

dC = Ctdt + CvdV + Crdr + 0.5Cvvd < V > +0.5Crrd < r > +Cvrd < V, r >

=
(
Ct + CvV (r + λV ) + aCr + 0.5CvvV 2(σ2

V + σ2
r) + 0.5Crrb

2 (88)

+bσrV Cvr

)
dt + CvV σV dWV + (CvV σr + Crb)dWr.

Besides, the claim price satisfies a generalized Black-Scholes partial differential

equation13

Ct +
(
r + λV − σV ζV − σrζr

)
vCv +

(
a− ζrb

)
Cr

+0.5
(
(σ2

V + σ2
r)v2Cvv + 2bσrvCvr + b2Crr

)
− rC = 0, (89)

where ζV := λV /σV denotes the market price of risk of the firm value and ζr(t) =

ζr(t, r(t)) stands for the market price of risk of the market for riskless bonds. We

assume that the latter is measurable and integrable. The market price ζr stays as

long unspecified as one does not assume that an interest rate sensitive claim, e.g.

a riskless bond, is traded. Defining the aggregate excess return λ := σV ζV + σrζr

and plugging the partial differential equation in (88) gives

dC = C
[(

r + λεC + bζrDC

)
dt + σV εCdWV +

(
σrεC + bDC

)
dWr

]
, (90)
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where εC := CvV/C denotes the elasticity of the claim and DC := Cr/C the

duration of the claim. Let πC denote the fraction invested in the contingent claim,

then the number of contingent claims is given by ϕC = πC · C/X. If an investor

can only split up her wealth in a riskless money market account and the claim, the

amount of money invested in the account can be computed as ϕM = (1−πC)·M/X.

Therefore, we arrive at the wealth equation

dX = ϕMdM + ϕCdC

= (1− πC)Xrdt

+πCX
[(

r + λεC + bζrDC

)
dt + σV εCdWV +

(
σrεC + bDC

)
dWr

]
,

= X
[(

r + λε + bζrD
)
dt + σV εdWV +

(
σrε + bD

)
dWr,

]
(91)

where ε and D denote the static elasticity and duration of the portfolio, i.e.

ε = πC · εC + (1− πC) · εM and D = πC ·DC + (1− πC) ·DM . (92)

Recall that εM = DM = 0. This procedure can be generalized to an arbitrary

number of claims C(t) = C(t, V (t), r(t)). Hence, the elasticity approach applies in

the case of stochastic interest rates. The relevant controls are the elasticity and the

duration.

Given an investor with a logarithmic utility function the optimal portfolio problem

reads as

max
(ε(·),D(·))∈A′

B
(0,x0)

E(lnXε,D(T ))} (93)

with

dXε,D = X
[(

r + (σV ζV + σrζr)ε + ζrbD
)
dt + σV εdWV + (σrε + bD)dWr

]
,

Xε,D(0) = x0 (94)

and

A′B(0, x0) :=
{

(ε(·), D(·)) ∈ A(0, x0) : Xε(t) ≥ 0, ε(t) ∈ [Lε(t),Uε(t)], (95)

D(t) ∈ [LD(t),UD(t)] ∀ t ∈ [0, τ), ε(t) = D(t) = 0 ∀ t ∈ [τ, T ]
}

,

where Uε (UD) denotes an adapted upper bound for the attainable elasticities (du-

rations) and Lε, LD the corresponding adapted lower bounds. We assume that

Lε < Uε and LD < UD. As the dynamics of the firm value and the short rate are

not further specified we cannot exclude situations where the elasticity is negative.

Analogously, the durations can be positive or negative. Note that in a complete

market we would have Uε = UD = +∞ and Lε = LD = −∞.
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Since in the present portfolio problem there are two sources of risk, which are

modelled by a two-dimensional Brownian motion, in general an investor needs at

least two different risky securities to attain a given combination of elasticity and

duration. Nevertheless, two securities might not be sufficient to replicate such

a combination. This is due to the restrictions on the attainable elasticities and

durations. If an investor can only split up her wealth in a money market account

and a corporate bond, she will not in general be able to replicate a given combination

of elasticity and duration. In this case the set A′B(0, x0) has to be further restricted

via the condition

D = ε ·DC/εC . (96)

As a consequence, the investor may only choose the elasticity ε of her portfolio.

The duration is then given by condition (96). Alternatively, she can decide for

a duration, but then the elasticity is automatically fixed. In the present setting,

this missing degree of freedom is characteristic for each portfolio problem with only

one risky investment opportunity. Therefore it will be beneficial to the investor if

her investment opportunity set is widened by a tradable stock or a subordinated

bond.14 However, if we assume that a firm issued senior and junior bonds, it has to

be taken into account, that then we have V = S + Bjunior + Bsenior.

We are now in the position to solve the portfolio problems.

Proposition 4.2 (Optimal sensitivities in the Briys-de Varenne model)

Consider the portfolio problem (93) and the Briys-de Varenne model with the gen-

eralized stochastic short rate (83). Let εuc := λV /σ2
V and Duc := (ζr − ζV σr/σV )/b

be the unconstrained optimal elasticity and duration.

(i) If the investor can invest in at least two corporate securities, as e.g. stock

and bond, the optimal elasticity and the optimal duration prior to default can be

represented by

ε∗|[0,τ ] = εuc +
b · (−χ1 + χ2) + σr · (χ3 − χ4)

bσ2
V

, (97)

D∗|[0,τ ] = Duc +
bσr · (χ1 − χ2) + (σ2

V + σ2
r) · (−χ3 + χ4)

b2σ2
V

, (98)

where χ1, χ2, χ3, χ4 ≥ 0 denote Lagrangian multipliers corresponding to the con-

straints Uε − ε ≥ 0, ε− Lε ≥ 0, UD −D ≥ 0, D − LD ≥ 0. The precise results for

all possible combinations of binding constraints are summerized in table 3.

(ii) If the investor can only invest in one corporate security with elasticity εC and
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duration DC then the optimal elasticity prior to default, i.e. t ≤ τ , is given by

ε̃(t) =





Lε(t), if Lε(t) > λ(t)+ζr(t)b(t)R(t)
σ2

V
(t)+(σr(t)+b(t)R(t))2

,

λ(t)+ζr(t)b(t)R(t)
σ2

V
(t)+(σr(t)+b(t)R(t))2

, if Uε(t) ≥ λ(t)+ζr(t)b(t)R(t)
σ2

V
(t)+(σr(t)+b(t)R(t))2

≥ Lε(t),

Uε(t), if Uε(t) < λ(t)+ζr(t)b(t)R(t)
σ2

V
(t)+(σr(t)+b(t)R(t))2

,

(99)

where R := DC/εC . The optimal duration is then given by (96).

[Insert table 3]

Proof. (i) For an admissible control (ε,D) the solution of the wealth equation

reads as

X(T ) = x0 exp
( ∫ T

0

r(s) ds
)
· exp

( ∫ T

0

λ(s)ε(s) + ζr(s)b(s)D(s) (100)

−0.5σ2
V (s)ε2(s)− 0.5

(
σr(s)ε(s) + b(s)D(s)

)2
ds

)

exp
( ∫ T

0

σV (s)ε(s) dWV (s) +
∫ T

0

σr(s)ε(s) + b(s)D(s) dWr(s)
)

Hence, we get

E(lnX(T )) = ln(x0) + E
( ∫ T

0

r(s) ds
)

+ E
( ∫ T

0

λ(s)ε(s) + ζr(s)b(s)D(s)

−0.5σ2
V (s)ε2(s)− 0.5

(
σr(s)ε(s) + b(s)D(s)

)2
ds

)
, (101)

Obviously, if the integrand of the second integral is maximized ω-wise with respect

to ε(t) and D(t) we obtain the optimal elasticity and duration. Hence, at time t < τ

we face a constrained optimization problem with a concave objective function15

f(ε,D) := λε + ζrbD − 0.5σ2
V ε2 − 0.5

(
σrε + bD

)2 (102)

= 0.5(ζ2
V + ζ2

r )− 0.5(ζV − σV ε)2 − 0.5(ζr − σrε− bD)2

under the constraints Uε − ε ≥ 0, ε− Lε ≥ 0, UD − D ≥ 0, D − LD ≥ 0. As a

consequence, the optimal elasticity and duration have to meet the following Kuhn-

Tucker conditions (KTC)

λ− (σ2
V + σ2

r)ε− σrbD − χ1 + χ2 = 0 (103)

bζr − σrbε− b2D − χ3 + χ4 = 0 (104)

χ1(Uε − ε) = 0, (105)

χ2(ε− Lε) = 0, (106)

χ3(UD −D) = 0, (107)

χ4(D − LD) = 0, (108)
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with the Lagrangian multipliers χ1, χ2, χ3, χ4 ≥ 0. Assume first that χi = 0,

i = 1, 2, 3, 4, (case 1). Then from the first and second KTC we get ε∗ = λV /σ2
V

and D∗ = (ζr − σrλV /σ2
V )/b. If χ1 > 0, we conclude ε∗ = Uε and χ2 = 0. Assume

further that χ3 = 0 and χ4 = 0 (case 2). Solving the second KTC for D leads

to D∗ = (ζr − σrUε)/b. The first KTC can be used to check that χ1 is really

strict positive. Assuming χ1 > 0 and χ3 > 0 leads to ε∗ = Uε, D∗ = UD and

χ2 = 0, χ4 = 0 (case 3). Using the first and the second KTC one can check that

χ1, χ3 are really strictly positive. The other cases summerized in table 3 can be

treated similarly. Besides, the representations (97) of ε∗ and D∗ can be calculated

by solving the first and second KTC for the elasticity and the duration.

(ii) Inserting (96) in the function f of (i) leads to an optimization problem for ε(t).

Solving this problem leads to the optimal elasticity ε̃. 2

Remark:

a) Note that the unconstrained optimal elasticity εuc does not depend on a traded

asset. Hence, the elasticity ε∗ only depends on the traded assets, if one of the

bounds is touched, whereas the elasticity ε̃ is never independent of the traded asset.

b) Assuming a logarithmic utility function leads to a separation of the accumulation

factor
∫ T

0
r(s) ds. This becomes obvious in equation (101). Therefore we can avoid

to specify the term structure model further.

Of course, the formulation of proposition 4.2 is not the one which is suitable for

practical purposes as Lagrangian multipliers are no observable input parameters. It

is always possible to determine from the observable variables in which case of propo-

sition 4.2 we are. However, a detailed such formulation would lead to an enormous

number of cases and subcases which does not allow for a compact presentation. To

demonstrate at least one such situation in an explicit form we concentrate on case

2 and 3 of the proposition. The other cases mentioned in table 3 can be interpreted

in a similar way. Assume that all parameters are positive. If the investor is forced

to take less firm value risk than she wants, i.e. εuc > Uε, and the constraints of the

duration are not binding (case 2), her optimal duration D∗ equals (ζr − σrUε)/b,

i.e. D∗ > Duc. Hence, she tries to compensate the restriction of the elasticity by

increasing her interest rate exposure. More generally, given an optimal duration ε∗

her optimal duration reads as (ζr − σrε
∗)/b, i.e. a forced decrease of the elasticity

leads to an increase of the optimal duration. But this adjustment of the duration is

only possible, if the upper bound UD is not reached. Otherwise, the corner solution
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ε∗ = Uε and D∗ = UD is optimal (case 3). In figure 1 and 2 we have illustrated the

two cases. Note that the maximal interest rate exposure equals ζr/b which can be

interpreted as a risk premium of the money market.16 An increase of this premium

makes the investment in the money market more attractive. Therefore, the investor

is willing to take more interest rate exposure. Moreover, given εuc > Uε the excess

investment in the money market (ζr − σrUε)/b −Duc is greater than with a lower

risk premium. Clearly, these arguments can be formalized by applying the KTC.

[Insert figure 1]

[Insert figure 2]

We want to stress that in figure 1 and 2 we have assumed that the unconstrained

optimum (εuc, Duc) stays the same, although ζr/b is increased in figure 2. Since the

straight line describing the substitution effect is given by

D =
ζr

b
− σr

b
ε, (109)

it becomes obvious that the slope −σr/b has to be increased, too. This can only

occur, if ζr and σr are increased, because a sole increase of b would contradict the

assumption that the unconstrained optimum stays the same. As a consequence, the

increase of ζr provides for the excess investment in the money market, whereas the

increase of σr is not relevant for the investor.

As before, we proceed by computing the optimal portfolio processes.

Corollary 4.2 (Optimal portfolios in the Briys-de Varenne model)

(i) Given that the investor can trade in the stock S and the corporate bond B and

assume that the elasticities and durations meet the condition

εS(t)DB(t)− εBDS(t) 6= 0 (110)

at time t ∈ [0, τ ]. Then the optimal portfolio process (π∗S(t), π∗B(t)) at time t is given

by

π∗S(t) =
ε∗(t)DB(t)− εB(t)D∗(t)
εS(t)DB(t)− εB(t)DS(t)

, π∗B(t) =
εS(t)D∗(t)− ε∗(t)DS(t)
εS(t)DB(t)− εB(t)DS(t)

. (111)

Otherwise, there exists a constant c(t) ∈ IR such that the portfolio elasticity can be

expressed as a muliple of the portfolio elasticity, i.e.

πS(t)DS(t) + πB(t)DB(t) = c(t)
(
πS(t)εS(t) + πB(t)εB(t)

)
. (112)
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Besides, only the elasticity ε̃(t) of proposition 4.2 with R(t) = c(t) is attainable and

each portfolio process (π∗S(t), π∗B(t)), which leads to this elasticity, is optimal, i.e.

the optimal portfolio process is not uniquely determined.

(ii) Given that the investor can only trade in the corporate bond, then the optimal

portfolio process is given by

π∗B(t) =
ε̃(t)

εB(t)
. (113)

Proof.

(i) To compute the optimal portfolio process we have to solve the system of equations

ε∗(t) = πS(t)εS(t) + πB(t)εB(t), (114)

D∗(t) = πS(t)DS(t) + πB(t)DB(t). (115)

If condition (110) is met, the determinant of the matrix

A(t) :=




εS(t) εB(t)

DS(t) DB(t)


 (116)

is not zero. Hence, the inverse of A exists, which leads to

(π∗S(t), π∗B(t))′ = A(t)−1(ε∗(t), D∗(t))′. (117)

If condition (110) is not met, the row vectors of the matrix are linearly dependent,

which yields (112). As a consequence, the investor cannot choose elasticity and

duration independently. Optimizing with respect to the elasticity gives the same

result as in proposition 4.2 with R(t) = c(t). Note that c(t) is equal to the ratio

of the portfolio’s duration and elasticity. Clearly, the optimal portfolio process is

not uniquely determined, because the investor can put her money in two corporate

securities to match the elasticity ε̃.

(ii) To match the elasticity ε̃ the investor has to choose the fraction πB so that

ε̃(t) = πB(t) · εB(t). This gives the result. 2

5 Conclusion

In this paper we considered portfolio problems with defaultable securities. The

default risk was modelled in the firm value framework of Merton (1974), Black/Cox

(1976), and Briys/de Varenne (1997). As there the price of a corporate security is

given by the price of a contingent claim, we actually face a portfolio problem with
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derivatives. Apart from this an additional restriction comes into play, which can

be interpreted as an accounting equation. This is due to the fact that in firm value

approaches the capital structure of the firm is explicitly modelled. As a consequence,

the investor can buy at most one stock and one bond, which lead to stochastic

bounds on the fractions. Actually, these bounds even depend on the control itself.

Using a “small investor assumption” we first omitted the accounting equation and

solved the resulting portfolio problem in the Merton model for ease of exposition.

Clearly, our approach can be applied to all firm value models where the corporate

securities are contingent claims on the firm value modelled by a geometric Brownian

motion. Besides, it is valid for a very general class of utility functions. This is due to

the fact that we used the elasticity approach to portfolio optimization which proves

to be very helpful when derivatives belong to the investment opportunity set.

In a next step we investigated the corresponding constrained portfolio problems.

We restricted our considerations to an investor who maximizes her terminal wealth

with respect to a logarithmic utility function. The reason is that the bounds on

the fractions are difficult to handle. Although we focused on the models of Merton

(1974), Black/Cox (1976), and a generalized version of Briys/de Varenne (1997) -

in contrast to Briys/de Varenne (1997) we used a general one-factor model for the

short rate -, our approach can be applied to other firm value models such as Geske

(1977), Longstaff/Schwartz (1995), or Saa-Requejo/Santa-Clara (1999). The study

of the constrained problem for more general utility functions is an aspect of future

research.

There is another approach to model default risk called the reduced-form approach,

which is developed in Jarrow/Turnbull (1995). Formally, default is triggered, when

a jump of a Poisson process occurs, which normally is not linked to a theoretical

construct like the firm value. Therefore there is not an explicit connection between

default and the capital structure of the firm. Hence, portfolio optimization using

a reduced-form model can be handled similar to an ordinary portfolio problem in

a jump-diffusion framework. To consider this framework in more detail is another

aspect of future research.
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Footnotes

1) To our knowledge only Merton (1971) considers a portfolio problem with default-

able bonds, but he used a bond model which can be seen as a rudimentary reduced

form model with deterministic interest rates.

2) For a derivation of the wealth equation see e.g. Korn/Korn (2001).

3) The word ”static” emphasizes that ε only equals the elasticity of the portfolio

if π is held constant. Otherwise, Ito’s rule has to be applied and additional terms

come into play.

4) In the next section, we will discuss this point in detail.

5) Another closed-form solution is derived for options guaranteed by fixed margins.

See Johnson/Stulz (1987) for further details.

6) See e.g. Fleming/Soner (1993) or Korn/Korn (2001).

7) See Korn/Kraft (2001).

8) In Black/Cox (1976) there is a typo in their formula (8) for the bond value. In

their notation, the seventh term of their formula (8) should be yθ+ηN (z7) instead of

yθ−ηN (z7). As a consequence, the last four terms in (8) cancel out if the dividend

yield is equal to zero. Note that we tried to adopt the notation of Black and Cox,

but we changed the sign of z3.

9) See e.g. Jones/Mason/Rosenfeld (1984), Kim/Ramaswamy/Sundaresan (1993),

or Longstaff/Schwartz (1995).

10) See e.g. Korn/Korn (2001).

11) Briys/de Varenne (1997) also allow for deviations of the absolute priority rule.

We do not consider this generalization here, because it does not fundamentally alter

our results.

12) In the context of stochastic interest rates duration was introduced by

Cox/Ingersoll/Ross (1979) using their interest rate model. They define duration

as G−1(−DC), where G is a model dependent function. This is due to the fact that

duration is normally measured in units of time. Only, if the interest rates are de-

terministic or the time-continuous Ho-Lee model is used both definitions coincide.

Since in our context only the sensitivity Cr/C becomes relevant, we use the word

“duration” for this sensitivity in accordance with the deterministic case.

13) See Merton (1973) or Duffie (2001) for a textbook reference.

14) We want to emphasize that a complete market does not always complete the
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investor’s opportunity set. This can be due to institutional restrictions, as e.g. faced

by bond investment fonds, which are not permitted to invest in stocks.

15) For notational convenience we omitted the dependencies on time t.

16) Money market is used in a rather sloppy way. Here we mean a market which is

purely affected by the interest rate risk.
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Table 1

Probability of not-touching the barrier for a portfolio problem with

stocks and bonds. This table reports the probability that an investor who can

put her wealth into bonds and stocks of a firm does not want to buy the whole

issues. The investor maximizes her terminal wealth with respect to a logarithmic

utility function. It is assumed that the drift of the firm value is 0.15, the volatility

of the firm value is 0.2, and the riskless interest rate is 0.05. The first row reports

the different investment horizons T . The following rows report the probabilities for

different ratios of initial wealth x0 to inital firm value v0. It becomes obvious that

for small investors the probability is almost one.

Time Ratio x0/v0

T 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.01 0.005 0.001

1 0 0.301 0.612 0.853 0.971 0.998 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

3 0 0.153 0.338 0.545 0.748 0.906 0.985 ≈ 1 ≈ 1 ≈ 1 ≈ 1

5 0 0.107 0.241 0.402 0.586 0.774 0.926 0.995 ≈ 1 ≈ 1 ≈ 1

7 0 0.083 0.188 0.319 0.479 0.662 0.847 0.977 ≈ 1 ≈ 1 ≈ 1

10 0 0.062 0.141 0.243 0.373 0.537 0.732 0.926 0.999 ≈ 1 ≈ 1
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Table 2

Probability of not-touching the barrier for a portfolio problem with cor-

porate bonds. This table reports the probability that an investor who can only

put her wealth into corporate bonds does not want to buy the whole issue. The in-

vestor maximizes her terminal wealth with respect to a logarithmic utility function.

It is assumed that the drift of the firm value is 0.15, the volatility of the firm value

is 0.2, the riskless interest rate is 0.05, the inital firm value v0 is 1000, and the face

value of the corporate bond is 750. The first row reports the different investment

horizons T . The following rows report the probabilities for different ratios of initial

wealth x0 to inital firm value v0. It becomes obvious that even for relative small

investors the probability is far from being one.

Time Ratio x0/v0

T 0.01 0.005 0.0001 0.00005 0.00001

1 0.151 0.271 0.523 0.617 0.782

3 0.076 0.123 0.226 0.273 0.372

5 0.042 0.066 0.124 0.143 0.207

7 0.022 0.040 0.070 0.090 0.126

10 0.008 0.017 0.032 0.042 0.059
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Table 3

Optimal elasticity and duration in the Briys-de Varenne model. This table

reports the optimal elasticity and duration of a portfolio problem where an investor

can put her wealth in at least two different corporate securities. These securities

are modelled by a Briys-de Varenne model. Since one has to consider upper and

lower bounds for the attainable elasticities and durations nine cases have to be

distinguished. These cases are characterized via the Lagrangian multipliers. For

notational convenience we omit the dependencies on time t.

case Lagrange multipliers optimal elasticity optimal duration

no. χ1 χ2 χ3 χ4 ε∗ D∗

1 = 0 = 0 = 0 = 0 λV /σ2
V (ζr − σrλV /σ2

V )/b

2 > 0 = 0 = 0 = 0 Uε (ζr − σrUε)/b

3 > 0 = 0 > 0 = 0 Uε UD

4 > 0 = 0 = 0 > 0 Uε LD

5 = 0 > 0 = 0 = 0 Lε (ζr − σrLε)/b

6 = 0 > 0 > 0 = 0 Lε UD

7 = 0 > 0 = 0 > 0 Lε LD

8 = 0 = 0 > 0 = 0 (λ− σrbUD)/(σ2
V + σ2

r) UD

9 = 0 = 0 = 0 > 0 (λ− σrbLD)/(σ2
V + σ2

r) LD
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Figure 1

Unconstrained optimal elasticity not attainable. This figure illustrates the

situation of an investor who is not able to attain the unconstrained optimal elasticity

εuc, but the bounds on the duration are not binding. The quadrat restricts the set

of attainable combinations of elasticity and duration. Her optimal strategy is given

by the intersection of the quadrat and the straight line D = ζr/b− εσr/b, because

duration is not restricted. As a consequence, she can take all the additional interest

risk that she wants to take.
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Figure 2

Unconstrained optimal elasticity and duration not attainable. This figure

illustrates the situation of an investor who is neither able to attain the unconstrained

optimal elasticity εuc nor the unconstrained optimal duration Duc. This is due to

the fact that both the upper bound of the elasticity and the upper bound of the

duration are violated. The quadrat restricts the set of attainable combinations of

elasticity and duration. Since the straight line D = ζr/b − εσr/b does not cut the

quadrat she cannot take all the additional interest rate risk that she wants to take.

Hence, the right upper corner of the quadrat represents the optimal combination of

elasticity and duration.
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