Sequential Warrant Exercise in Large Trader Economies

Tobias Linder and Siegfried Trautmann

CoFaR, Gutenberg-University, Mainz

35th Annual Meeting of the European Finance Association Athens, 27-30 August 2008

Introduction ●୦୦	Model 000000	Partial Exercise	Sequential Exercise	Conclusion ○
Motivatio	1			

- Not only hedge funds focusing on convertible arbitrage hold often substantial parts of convertible issues.
- Such investors act very often as non-pricetaker and must be deemed as "large trader".
- Classical literature on valuation and exercising of convertibles considers only a simplified capital structure without (straight) dept of the issuing firm.

Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
000				

Related literature and its key message

• Emanuel (1983), Constantinides (1984), and others:

 - "... warrant valuation and exercise strategy differ fundamentally from call option valuation - sequential exercise is benefical to "large" warrantholders."

• Spatt and Sterbenz (1988):

 "Sequential exercise may be advantageous for monopoly and oligopoly warrantholders, but there are reinvestment policies for which sequential exercise is not advantageous."

• Bühler and Koziol (2002):

- "Partial exercise can be optimal for pricetakers in the presence of additional debt."

Introduction ○○●	Model 000000	Partial Exercise	Sequential Exercise	Conclusion ○
Main find	lings			

- We present sufficient conditions for the non-optimality of sequential exercise of American-type warrants.
- For a <u>realistic</u> parameter setting it turns out that exercising warrants sequentially is <u>not</u> beneficial to non-pricetaking ("large") warrantholders.
- This result, however, does not justify in general the simplifying restriction that warrants or convertible securities are valued as if exercised as a block.

Capital structure of the firm

 $(n - m_t) \text{ outstanding warrants with}$ total value $(n - m_t) W_t(V_t)$, maturity $T < T_D$, and strike price Kand maturity T_D) $(N + m_t) \text{ shares of common}$ stock with total value $\overline{S}_t(V_t) = (N + m_t) S_t(V_t)$

with firm value

$$V_t = (N + m_t) S_t + (n - m_t) W_t + D_t \text{ for all } t \in [0, T)$$

Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
	00000			

Further assumptions

• Exercise proceeds are used to rescale the firm's investment. At exercise times t_k the firm value jumps to

$$V_{t_k} = A_{t_k} + \sum_{j=1}^k m'_{t_j} K \frac{A_{t_k}}{A_{t_j}},$$

where A_t denotes the price of the "average" asset in which the firm invests, and m'_t denotes the number of warrants exercised at time t.

- No dividend payments.
- Warrantholder do not hold shares of common stock.

Introduction	Model ○○●○○○	Partial Exercise	Sequential Exercise	Conclusion ○
Definition	s			

D1 Warrantholders follow a so-called <u>sequential exercise</u> strategy if they exercise American-type warrants before maturity. Otherwise the warrantholders follow a so-called <u>block exercise</u> strategy if the number of warrants exercised at the maturity date is given by

$$m_{\mathcal{T}} = \begin{cases} 0 & \text{for} \quad \frac{1}{N+n} \,\overline{S}_{\mathcal{T}} \, (V_{\mathcal{T}}) \in [0, K] \\ n & \text{for} \quad \frac{1}{N+n} \,\overline{S}_{\mathcal{T}} \, (V_{\mathcal{T}}) \in [K, \infty), \end{cases}$$

or they follow a so-called *partial exercise* strategy.

D2 The <u>partial exercise option</u> is the option to follow a partial exercise strategy instead of a block exercise strategy. The <u>sequential exercise option</u> is the option to follow a sequential exercise strategy instead of a partial exercise strategy.

Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
	000000			

Non-cooperative, non-zero-sum game

- We model the warrantholders' exercise behavior as a noncooperative game and consider a Nash equilibrium as an optimal exercise strategy for the warrantholders.
- While Constantinides (1984) and other authors analyse a zero-sum game between the warrantholders and the stockholders (as passive players),
- our game is not zero-sum: there is a wealth transfer from the stockholders and the warrantholders to the debtholders when warrants are exercised (like in Bühler and Koziol (2002), Koziol (2003, 2006), and Kapadia and Willette (2005)).

Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
	000000			

Payoff function before maturity

• for a pricetaking warrantholder p

$$\pi_{t}^{p}(m^{p},m,V_{t}) = m_{t}^{p}(S_{t}(V_{t}) - K) + (n^{p} - m_{t}^{p}) W_{t}(V_{t}),$$

• for a non-pricetaker:

$$\pi_t^L (m^L, m^{-L}, V_t) = m_t^L (S_t(V_t) - K) + (n^L - m_t^L) W_t (V_t).$$

His exercise policy influences the firm value and in particular the stock price $S_t(V_t)$.

Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
	000000			

Payoff function at maturity

 is <u>linear</u> (in the number of warrants exercised by himself) for a pricetaking warrantholder:

$$\pi_T^p(m^p, m, V_T) = m_T^p\left(\frac{\overline{S}_T(V_T)}{N+m_T} - K\right) ,$$

• is <u>quasi-concave</u> (with respect to m_T^L , see Linder/Trautmann, 2006) for a non-pricetaking warrantholder:

$$\pi_T^L(m^L, m^{-L}, V_T) = m_T^L \left(\frac{\overline{S}_T(V_T)}{N + m_T^L + m_T^{-L}} - K \right)$$

Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
		00000		

Exercise strategies in a Nash equilibrium

Extending the results of Koziol (2006), Kapadia and Willette (2005), and Linder and Trautmann (2006) we can show that the following strategy is a Nash equilibrium:

$$(m_{T}^{p*}, m_{T}^{L_{1}*}, m_{T}^{L_{2}*}, \dots, m_{T}^{L_{Z}*}) = \begin{cases} (0, 0, 0, \dots, 0) & \text{for } V_{T^{-}} \in [0, \underline{V}) \\ (x^{*}, 0, 0, \dots, 0) & \text{for } V_{T^{-}} \in [\underline{V}, \underline{V}_{1}) \\ (n^{p}, x_{1}^{*}, x_{1}^{*}, \dots, x_{1}^{*}) & \text{for } V_{T^{-}} \in [\underline{V}_{1}, \underline{V}_{2}) \\ (n^{p}, n^{L_{1}}, x_{2}^{*}, \dots, x_{2}^{*}) & \text{for } V_{T^{-}} \in [\underline{V}_{2}, \underline{V}_{3}) \\ \vdots \\ (n^{p}, n^{L_{1}}, \dots, n^{L_{Z^{-1}}}, x_{Z}^{*}) & \text{for } V_{T^{-}} \in [\underline{V}_{Z}, \overline{V}_{Z}) \\ (n_{L}, n^{L_{1}}, n^{L_{2}}, \dots, n^{L_{Z}}) & \text{for } V_{T^{-}} \in [\overline{V}_{Z}, \infty) \end{cases}$$

where the critical firm values $\underline{V}, \ \underline{V}_1, \ \underline{V}_2, \ \underline{V}_3, \ \dots, \ \underline{V}_Z$ and \overline{V}_Z solve

Introduction	Model	Partial Exercise	Sequential Exercise	Conclusion
000	000000	○●○○○		○

$$\frac{1}{N} \overline{S}_T(\underline{V}) = K$$

$$\frac{1}{N+n^p} \overline{S}_T(\underline{V}_1 + n^p K) = K$$

$$\frac{\partial}{\partial m_T^{L_1}} \pi_T^{L_1} (n^{L_1}, n^p + (Z-1)n^{L_1}, \underline{V}_2 + m_T K) = 0$$

$$\frac{\partial}{\partial m_T^{L_2}} \pi_T^{L_2} (n^{L_2}, n^p + n^{L_1} + (Z-2)n^{L_2}, \underline{V}_3 + m_T K) = 0$$

$$\vdots$$

$$\frac{\partial}{\partial m_T^{L_{Z-1}}} \pi_T^{L_{Z-1}} (n^{L_{Z-1}}, n^p + n^{L_1} + \dots + n^{L_{Z-2}} + n^{L_{Z-1}}, \underline{V}_Z + m_T K) = 0$$

$$\frac{\partial}{\partial m_T^{L_2}} \pi_T^{L_2} (n^{L_2}, n^p + n^{L_1} + \dots + n^{L_{Z-1}}, \overline{V}_Z + m_T K) = 0$$

Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
		00000		

And the exercise policies $x^*, x_1^*, x_2^*, \ldots, x_Z^*$ are the solutions of

$$\frac{1}{N+x^{*}} \overline{S}_{T} \Big(V_{T^{-}} + x^{*} K \Big) = K$$

$$\frac{\partial}{\partial m_{T}^{L_{1}}} \pi_{T}^{L_{1}} (x_{1}^{*}, n^{p} + (Z-1) x_{1}^{*}, V_{T^{-}} + m_{T} K) = 0$$

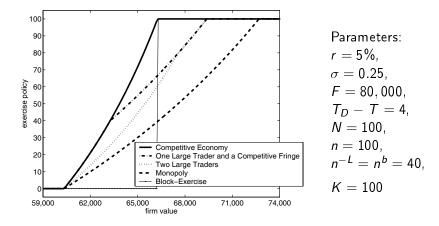
$$\frac{\partial}{\partial m_{T}^{L_{2}}} \pi_{T}^{L_{2}} (x_{2}^{*}, n^{p} + n^{L_{1}} + (Z-2) x_{2}^{*}, V_{T^{-}} + m_{T} K) = 0$$

$$\vdots$$

$$\frac{\partial}{\partial m_{T}^{L_{2}}} \pi_{T}^{L_{2}} \left(x_{Z}^{*}, n^{p} + n^{L_{1}} + \dots + n^{L_{Z-1}}, V_{T^{-}} + n K \right) = 0$$

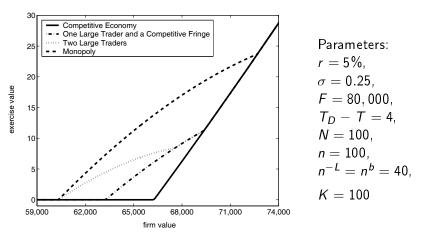
Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
		00000		

Optimal exercise policies of European-type warrants



Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
		00000		

Exercise values of European-type warrants



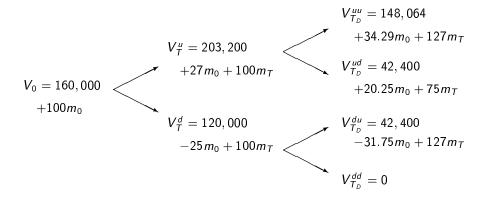
Introduction	Model 000000	Partial Exercise	Sequential Exercise	Conclusion ○

Sequential exercise of American-type warrants

- Emanuel (1983), Constantinides (1984), and others emphasize the *potential* advantage of sequential exercise strategies by "large" warrantholders, even absent regular dividend payments. The following example illustrates this advantage.
- We assume that the firm's assets follows a binomial process with two periods starting in t = 0 and t = T. In each period the firm's asset can increase by 27% or decrease by 25% (the interest rate equals r = 1% then the risk neutral probability for an increase is q = 0.5).

Beneficial sequential exercise: an example

With N = n = K = 100, and $V_0 = A_0$ we get



Introduction	Model 000000	Partial Exercise	Sequential Exercise ○○●○○○○	Conclusion ○

Stock price, warrant price and the debt value satisfy

$$S_0(V_0) = \frac{1}{1+r} \left(q S_T(V_T^u) + (1-q) S_T(V_T^d) \right) = \frac{1}{(1+r)^2} \left(332.21 + 0.03m_0 \right)$$

$$W_0(V_0) = S_0(V_0) - \frac{1}{1+r} 100$$

$$D_0(V_0) = \frac{1}{(1+r)^2} \left(106,875 - 4.69m_0 \right) .$$

- Pricetaking warrantholders are better off not to exercise warrants since S₀(A₀) - K < W₀(A₀).
- Non-pricetaker L will exercise either all warrants or no warrant at all since

$$\frac{\partial}{\partial m_0^L} \pi_0^L(m^L, 0, V_0) = \left(\frac{1}{1+r}100 - 100\right) + n^L \frac{0.03}{(1+r)^2}.$$

Introduction 000	Model 000000	Partial Exercise	Sequential Exercise	Conclusion ○

- The requirement $\partial \pi_0^L(m^L, 0, V_0)/\partial m_0^L > 0$ is equivalent to $n^L > 33, 67$. That is, if warrantholder L owns more than 33.67 warrants he exercises all his warrants, otherwise none.
- Price impacts for different market regimes:

	Competitive	One large	One large	Monopoly
	economy	trader (<i>n^L</i> = 33)	trader ($n^L = 66$)	
So	325.66	325.66	327.61	328,61
W _o	226.65	226.65	228.60	229,60
Do	104,769.14	104,769.14	104,465.70	104,309.38

Intro duction	Model	Partial Exercise	Sequential Exercise	Conclusion
	000000		0000000	

Sufficient conditions for no sequential exercise

Condition I (model-independent)

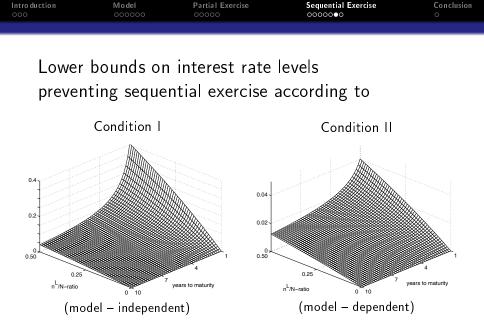
Warrantholder L's sequential exercise option has zero value if the following upper bound on the wealth transfer per warrant from stock- and bondholders to warrantholder L is less than the present value of earnings from investing K dollars for T periods:

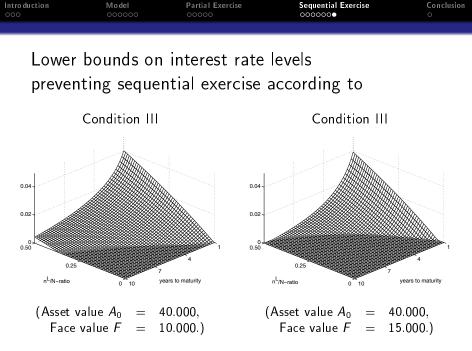
$$K\left(1-e^{-rT}\right)>Krac{n^{L}}{N+n^{L}}$$

Condition II (model-dependent)

Warrantholder L's sequential exercise option has zero value if

$$K\left(1-e^{-rT}\right)>Krac{n^{L}}{N+n^{L}}\left(rac{C_{0}(V_{0},V_{0})}{V_{0}}
ight).$$





Introduction	Model 000000	Partial Exercise	Sequential Exercise	Conclusion ●
Conclusion				

- This paper clarifies under which conditions sequential exercise of American-type warrants is beneficial to warrantholders.
- We present three different (sufficient) conditions for the non-optimality of sequential exercise.
- The advantage of sequential exercise of warrants decreases with increasing interest rates, increasing time to maturity, and decreasing ownership concentration.
- These results, however, do not justify in general the simplifying restriction that warrants are valued as if exercised as a block.
- The partial exercise option has namely a positive value if (and only if) the firm has debt in its capital structure and there is at least one non-price taking warrantholder.