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1 Introduction

In contrast to a large amount of theoretical and empirical work available on the val-
uation of credit derivatives (see Bielecki and Rutkowski (2002), Duffie and Singleton
(2003), Lando (2004) for reviews), hedging of credit derivatives remains a largely
unexplored avenue of research. When valuing and hedging credit derivatives, two
quantities are crucial. The first is the probability of default (or default intensity,
if it exists), and the second is the default recovery (or recovery rate) in the event
of default. While in traditional models the recovery rate is given exogenously as a
known constant at the default time1, this rate is stochastic in reality, even condi-
tional on the default time. This uncertainty in the default recoveries of both the
underlying instrument (e.g., equity) and particularly the credit derivative (e.g., a
convertible bond) is perhaps the most important reason why hedges in practice are
not self-financing.

The main purpose of this paper is therefore not valuation but hedging credit deriva-
tives in the presence of recovery risk in a reduced-form framework. Since in general,
the common objective of arbitrageurs in credit derivatives markets is to minimize
the variance of the hedging costs, we focus on the locally risk-minimizing hedging
strategy. Föllmer and Sondermann (1986) pioneered this approach in the spe-
cial case where the underlying instrument follows a martingale. At each point in
time they require that the risk, defined as the expected quadratic hedging costs,
is minimized. However, in semimartingale models a risk-minimizing strategy does
not always exist. Therefore, Schweizer (1991) introduced a locally risk-minimizing
(LRM) hedging strategy and showed that – under certain assumptions – a strategy
is locally risk-minimizing if the cost process is a martingale which is orthogonal to
the martingale part of the underlying instrument process. The LRM-strategy is
mean-self-financing, that is at each point in time the expected sum of discounted
cash infusions or withdrawals until maturity is zero. The value of the hedge portfo-
lio is then the discounted expected terminal payoff of the option under the so-called
minimal equivalent martingale measure.

Hedging strategies for credit derivatives within the reduced-form framework have
been studied in the literature. On the one hand, there exist quite tractable mod-
els where the hedge ratio is explicitly given. For instance, Bielecki, Jeanblanc and
Rutkowski (2007) derived a hedging strategy for credit derivatives using credit de-
fault swaps (CDS) and a position in the riskless money market account. The model

1One exception is Guo, Jarrow and Zeng (2009). They model the recovery rate process itself.
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is easily implemented due to the fact that the interest rate level is assumed to be
flat at level null and both the default intensity and the recovery payment are de-
terministic, i.e. the default time is the only random quantity. On the other hand,
there exist models that allow all of the relevant quantities to be stochastic, but
only yield hedge ratios that contain the predictable process appearing in the above
mentioned martingale representation of the claim to hedge. Therefore, using these
strategies, one has to calculate this process. If all relevant quantities are stochastic
and possibly dependent, the situation quickly becomes hopeless. Models of this type
can be found, for instance, in Bielecki, Jeanblanc and Rutkowski (2008, 2011).2 Bi-
agini and Cretarola (2007, 2009, 2012) apply the local risk-minimization approach
to credit derivatives. However, they assume the recovery payment to be constant

conditional on default and provide explicit hedge ratios under the additional as-
sumption of either the interest rate or the default rate being stochastic. In this
paper, we fill the gap between those two classes of models and, based on a result
from Heath (1995), provide explicit representations of the LRM-hegde ratio in case
the recovery payment is stochastic conditional on default and both stochastic but
independent interest and default rates. However, due to a result from Brigo and
Mercurio (2006), this independence assumption is no major restriction.

We derive LRM-hedging strategies for reduced-form models when there are two
hedging instruments: a locally riskless money market account and a risky underlying
instrument. We denote the recovery rate as single-stochastic if the recovery amount
depends only on the default event and the interest rate. We call the recovery rate
doubly-stochastic if the recovery amount also depends on the realization of another
random variable. Corresponding model variants are examined for the reduced-form
model framework. In this framework we assume the existence of a tradable zero
coupon bond with total loss at default of the firm under consideration. However,
we emphasize that the defaultable zero coupon bond can be replaced by stocks, if
the stock is assumed to fall to a prespecified level at the time of default.

It turns out that the corresponding LRM-strategy is not only mean-self-financing
but also self-financing if the default recovery is single-stochastic. That is, as long as
the recovery amount is known in the event of default, there exists a self-financing
replication strategy for credit derivatives. Moreover, we find that in the more
realistic case of doubly-stochastic default recoveries, the LRM-hedging strategy does

2In fact, there exists a large amount of sometimes overlapping published and unpublished

papers by the same and related authors. For a complete list, we refer to Bielecki and Rutkowski

(2002) and Chesney, Jeanblanc and Yor (2009).
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only depend on the expected recovery amount, not on other characteristics of its
distribution. This key result of the paper helps to justify the frequently made
simplifying assumption that the default recovery is a constant, conditional on the
default event, when pricing and hedging credit derivatives.

At first glance this result seems to contradict the result of Grünewald and Traut-
mann (1996) when deriving LRM-strategies for stock options in the presence of
jump risk. In that setting the LRM-strategy depends additionally on the variance
of the stock’s jump amplitude. This key difference is due to the fact that in our
model default of the firm implies that the underlying instrument’s price jumps al-
ways to zero while in Merton’s (1976) jump diffusion setting assumed by Grünewald
and Trautmann (1996), the option’s underlying stock price jumps to an arbitrary
price level.

We also run a simulation to test the impact of the different model assumptions on the
cumulative hedging costs. It will turn out that the latter are nearly unaffected by the
whether the interest rate is deterministic or stochastic. However, they are affected
by the assumptions imposed on the default rate. Therefore, our simulation results
suggest that both the recovery and the default rate should be modelled as stochastic
processes when hedging credit derivatives. We also test the LRM-strategy against
alternative strategies (and alternative hedging instruments). First, we consider an
extension of the duplication strategy using CDS contracts by Bielecki, Jeanblanc
and Rutkowski (2007) to the case of doubly-stochastic recovery payment. Finally,
we also consider two cross-hedging strategies. The first of them involves a junior
bond of a comparable firm, i.e. an instrument with the same default intensity but
a distinct default time. The second cross-hedging strategy involves a position in
a credit index of the type investigated in Brigo and Morini (2011), i.e. a pool of
credit names with the same credit quality (the same default rate) as the instrument
we wish to hedge.

The paper is organized as follows: Section 2 describes hedging as a sequential
regression and illustrates the paper’s basic insight. Section 3 looks at locally
risk-minimizing hedging policies in a reduced-form model when recovery is single-
stochastic and doubly-stochastic, respectively. In Section 4, we also consider model
extensions by assuming that either the interest rate or the default intensity or both
are stochastic. In Section 5, we use simulated data to test the impact of the differ-
ent model assumptions on the cumulative hedging costs. Section 6 concludes the
paper. All technical proofs are given in Appendix A.
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2 Hedging by Sequential Regression

In incomplete financial markets not every contingent claim is replicable. For this
reason a lot of different hedging strategies have been evolved in the literature.
On the one hand there exist hedging approaches searching self-financing strategies
which reproduce the derivative at the best. On the other hand there are hedging
strategies replicating the derivative exactly at maturity by taking into account ad-
ditional costs during the trading period. While the first class of hedging strategies
optimizes the hedging error, to be more precisely the difference between the pay-off
of the derivative FT and the liquidation value of the hedging strategy, the other
class minimizes the hedging costs. In a discrete time set-up Föllmer and Schweizer
(1989) developed a hedging approach of the latter type, the so-called locally risk-

minimizing hedging.
Table 1: Hedging Concepts: An Overview.

Complete Financial Market Incomplete Financial Market

No Delta-Hedging Superhedging

Shortfall Black, Merton, Scholes (1973) Naik and Uppal (1992) No

Risk- & Variance-Minimizing Hedging Restric-

Föllmer and Sondermann (1986) tion

on

Locally Risk-Minimizing Hedging Initial

Föllmer and Schweizer (1989) Costs

Globally Risk- and Variance-Minimizing Hedging

Shortfall Schweizer (1995)

Risk Shortfall-Hedging Restric-

Föllmer and Leukert (1999) tion

(Global) Expected Shortfall-Hedging on

Föllmer and Leukert (2000) Initial

Local Expected Shortfall-Hedging Costs

Schulmerich (2001), Schulmerich and Trautmann (2003)

When using two hedging instruments, the underlying asset with price process S

and the money market account with price process B, H = (hS,hB) describes the
hedging strategy composed of hS shares in the underlying and hB shares in the
money market account. In a discrete-time setting Vt(H) = hS

t+1St+hB
t+1Bt denotes

the liquidation value of the strategy, Gt(H) =
∑t

i=1(h
S
i ∆Si+hB

i ∆Bi) the cumulated

gain and finally Ct(H) = Vt(H)−Gt(H) the cumulated hedging costs at time t. To
achieve a locally risk-minimizing hedging strategy, Föllmer and Schweizer (1989)
solve the following
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Problem 1 (Locally risk-minimizing hedging in discrete time)

Search the trading strategy H which replicates exactly the derivative FT at maturity

T and in addition minimizes the expected quadratic growth of the hedging cost at

every point in time:

EP
[
(∆Ct(H))2 |Gt−1

]
→ min for all t = 1, . . . ,T and H ∈ H with VT (H) = FT .

A solution of Problem 1 is called locally risk-minimizing hedging strategy or LRM-

hedge3. Föllmer and Schweizer (1989) have pointed out that Problem 1 is a sequen-
tial regression task that can be solved by backwards induction: In a first step we
determine hS

T and hB
T by identifying the solution of the subproblem

EP
[
(∆Ct(H))2|Gt−1

]
→ min for all hS

t , h
B
t given Vt(H) (1)

for t = T with VT (H) = FT . Since we have Vt(H) = hS
t+1St + hB

t+1Bt for all
dates t = 0, . . . ,T − 1 we know VT−1(H) and then we can solve the subproblem (1)
for t = T − 1 and thus obtain hS

T−1 (as slope of the regression line) and hB
T−1 (as

intercept), and so on. Since ∆Ct(H) = Vt(H)− (hS
t St + hB

t Bt) holds, (1) is a linear
regression problem which can be solved by the least square approach. Figure 2
illustrates this idea.

In the following, we show that this relation shows directly that two different ways
of modeling recovery payments lead to the same locally risk-minimizing strategy
when hedging a short position in credit derivatives. The first kind of recovery
model assumes that the recovery rate is single-stochastic since it only depends on
the default-time and perhaps the interest rate level as illustrated in part (a) of
Figure 1 for a two period set-up. Thus, the recovery amount depends only on the
time of default (and the interest rate level).

In the second kind of recovery model the recovery rate is called doubly-stochastic

allowing in addition (to the default time and the term structure) other risk factors
to influence the recovery payment (see part (b) of Figure 1). For example these
additional factors can characterize the uncertain costs of financial distress or the
uncertain time delay of the promised recovery payment. Thus, in this model the
default time and the interest rate level do not uniquely determine the recovery
payment.

3An LRM-hedge also solves the problem

EP
[
(∆Ct(H))

2 |Gt−1

]
→ min for all t = 1, . . . ,T and H ∈ H with VT (H) = FT ,

where ∆Ct(H) = ∆Ct(H)/Bt denotes the discounted growth of the hedging costs and Bt is the

value of the money market account at time t.
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Figure 1: Single-stochastic versus doubly-stochastic recovery.

Part (a) of this figure depicts the price process of a credit derivative with a recovery

payment depending only on the default time (”l” denotes liquidity, ”b” bankruptcy) and

the term structure (”u” denotes an up-tick and ”d” a down-tick of the interest rate).

Conditional on default (and the given term structure) the recovery payment is known. The

latter is not the case if the recovery payment is doubly-stochastic. Part (b) of the figure

shows that conditional on default (and the given term structure) the recovery payment

can take on m different values Z1, . . ., Zm.

(a) Price process when recovery is single-stochastic.

F0

F1(u,b)=Z1

F1(u,l)

F1(d,b)=Z1

F1(d,l)

F2(u,lb) = Z2(u)

F2(u,ll) = F

F2(d,lb) = Z2(d)

F2(d,ll) = F

(b) Price process when recovery is doubly-stochastic.

F0

F1(u,b,1)=Z1
1

...

F1(u,b,m)=Zm
1

...

F1(u,l)

F1(d,b,1)=Z1
1

...

F1(d,b,m)=Zm
1

...

F1(d,l)

F2(u,lb,1) = Z1
2 (u)

...

F2(u,lb,m) = Zm
2 (u)

...

F2(u,ll) = F

F2(d,lb,1) = Z1
2 (d)

...

F2(d,lb,m) = Zm
2 (d)

...

F2(d,ll) = F
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Figure 2 already illustrates the key result of this paper: the locally risk-minimizing
hedging strategy for the credit derivative is the same for single- and doubly-
stochastic recovery modeling, provided that the expected doubly-stochastic recovery
payment conditional on the default time (and the term structure) coincides with the
single-stochastic recovery payment conditional on the default time (and the interest
rate level).

Figure 2: LRM-strategy when recovery is doubly-stochastic.

When recovery is doubly-stochastic the payment at default does not only depend on the

default time and the interest rate level but also on another risk factor. Different realizations

of this risk factor are denoted by the superscript j, so the state of the world at date t = 1 is

ωj
1. Since the underlying (say, shares of common stock of the firm, or a corporate zero-bond

with total loss at default written on the underlying firm) does not depend on the additional

factor, its price is always zero at default, S1(ω
1
1) = S1(ω

2
1) = . . . = 0. The symbol ” ◦ ”

describes a possible realization of the discounted value of the hedge portfolio. To determine

the LRM-hedge we have to run a regression for the five value tuples represented by the

◦-symbol. Alternatively, we can calculate in a first step the average value of the hedge

portfolio V1(H)(ω1), conditional on the default event occurring. The latter pairs of values

are denoted with the ”•” symbol. In a second step, we identify the slope for the regression

line for the points ”•” (only two tuples, as you can see) which equals the slope of the first

regression.

V1(H)(ω1)

V1(H)(ω1
1)

V1(H)(ω3
1)

V1(H)(ω2
1)

V1(H)(ω4
1)

V1(H)(ω2)

S1(ω2)
”Solvency”

S1(ω1)

”Default”

hS
1S1 + hB

1

value-tupel when recov-

ery is single-stochastic

value-tupel when recov-

ery is doubly-stochastic

6

-

Value of Hedge Portfolio

V1(H)

Value of
Underlying S1
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The insight provided by Figure 2 can be proven in a more formal way. We show that
the single-stage regression approach (delivers the LRM-hedge of a defaultable claim
assuming doubly-stochastic recovery) and a two-stage procedure (delivers the LRM-
hedge of a defaultable claim assuming single-stochastic recovery which coincides at
any default time with the expectation of the doubly-stochastic recovery conditional
on the default time) provide the same result. With the conventions pi =

∑
j p(ω

j
i ),

St(ω
j
i ) =

∑
k St(ω

k
i )p(ω

k
i )/pi, and Vt(H)(ωj

i ) =
∑

k Vt(H)(ωk
i )p(ω

k
i )/pi for all j, we

obtain

EP [Vt(H)|Gt−1] =
∑

i,k

p(ωk
i )Vt(H)(ωk

i ) =
∑

i

piVt(H)(ωj
i ) = EP [Vt(H)|Gt−1] ,

and in an analogous manner, we have EP [(St)
2|Gt−1] = EP

[
(St)

2|Gt−1

]
, EP [St|Gt−1]

= EP [St|Gt−1], EP [Vt(H)St|Gt−1] = EP [Vt(H)St|Gt−1]. From this, it follows that
the hedge ratio (slope of the regression line) and the shares in the money market
account (intercept of the regression line) of the one-stage regression approach,

hS
t =

CovP [Vt(H),St|Gt−1]

VarP [St|Gt−1]
and hB

t =
EP [Vt(H)|Gt−1]

Bt

− hS
t EP [St/Bt|Gt−1] ,

coincide with these of the two-stage procedure:

hS
t =

CovP [Vt(H),St|Gt−1]

VarP [St|Gt−1]
and hB

t =
EP [Vt(H)|Gt−1]

Bt

− hS
t EPSt/Bt|Gt−1] .
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3 Hedging in Reduced-Form Models

Below we will determine hedging strategies for credit derivatives, e.g. defaultable
bonds and credit default swaps. We envision a situation where a hedger owns
a portfolio of such credit derivatives and tries to hedge this portfolio against all
kinds of risk, namely default risk, interest rate risk and recovery rate risk. Suitable
hedging instruments are then money market accounts, CDSs, junior bonds and so
on.

In the following we assume that the hedger tries to hedge a short position in a
coupon-paying defaultable bond. This defaultable bond delivers time-continuous
cash flows Ct in 0 ≤ t ≤ T as long as no default has occurred. If the firm is still
solvent at the time of maturity a payment F will also be paid. Otherwise the owner
of the credit derivative receives (in addition to the cash flow stream C during the
period [0,τ)) the uncertain recovery payment Z(τ) depending on default time t = τ

and paid out at default. We denote the defaultable coupon bond by (Z,C, F ).4 We
assume that the recovery amount does not exceed the remaining value of the credit
derivative’s cash flow when no default occurs:

0 ≤ BT

Bτ

Z(τ) ≤ BT

∫ T

τ

1

Bt

dCt + F P -a.s., (2)

where Bt = exp{
∫ t

0
rs ds} denotes the value of the money market account at time t

and P denotes the statistical probability measure. At any time t < τ , the recovery
payment for a credit event occurring at time τ = u has an expected value of µZ(u)

and a standard deviation of σZ(u) under P . Because of (2) we have also

0 ≤ BT

Bu

µZ(u) ≤ BT

∫ T

u

1

Bt

dCt + F for 0 < u ≤ T.

For technical reasons we assume supu∈[0,T ] σ
Z(u) < ∞. Assumption (2) guarantees

that the value of the defaultable claim (Z,C, F ) is lower than the value of a default-

4When hedging a CDS, we have a different hedging situation. In this case, one hedges a claim

of the form (F − Z, − C, 0), since a CDS pays the difference between the recovery payment and

the promised face value, F − Z, and the buyer of the CDS does not receive but has to pay a

time-continuous premium.
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free but otherwise identical derivative (C, F ).
The cumulative value of the credit derivative at maturity amounts to

FT =

{
BT

∫ T

0
1/Bt dCt + F , if τ > T

BT

∫ τ

0
1/Bt dCt +BT/Bτ · Z(τ) , if τ ≤ T

.

The stochastic recovery rate of the credit derivative (Z,C, F ) is defined as follows:

δ(τ) =
BT

∫ τ

0
1/Bt dCt +BT/Bτ · Z(τ)
BT

∫ T

0
1/Bt dCt + F

=
BT/Bτ C̃τ +BT/Bτ · Z(τ)

C̃T + F
∈ [0,1], (3)

where C̃t =
∫ t

0
Bt/Bs dCs denotes the time-t value of the cash flow stream C during

[0,t] when default has not occurred until t. Relation (3) relates the final value of
the defaultable claim’s cash flows (Z,C, F ) to the final value of the default-free,
but otherwise identical derivative’s cash flows (C, F ).5 Because of assumption (2)
the recovery rate is lower than one. If the recovery only depends on the uncertain
default time and the uncertain interest rate, we will call it single-stochastic. If it is
subject to another source of risk, we will denote the recovery doubly-stochastic.

We assume that the seller of this defaultable claim (Z,C, F ) can hedge his short
position with strategy H = (hS, hB) consisting of hS defaultable zero bonds with
total loss in case of default and hB money market accounts. To simplify the follow-
ing presentation we start with a deterministic term structure, i.e. the short rate
(rt)t∈[0,T ] is a deterministic function of time.

3.1 A Simple Intensity Model

This section presents a simple intensity model in continuous time which describes
the possible default of a firm at time τ > 0 during the time horizon [0,T ], where
interest rates are deterministic. The credit event is specified in terms of an exoge-
nous jump process, the so-called default process Ht = 11{τ≤t}. In the following we
assume that H is an inhomogeneous Poisson process stopped at the first jump –
the default time:

P (τ ≤ t) = P (Ht = 1) = 1− exp

{
−
∫ t

0

λ(s) ds

}
for every t ≥ 0 ,

5Bakshi, Madan and Zhang (2006, p. 22) define the recovery rate by means of the out-standing

payments. But the definition above simplifies the following formulae for the hedging strategies.
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where λ is a deterministic, non-negative function of time with
∫ T

0
λ(t) dt < ∞

representing the default intensity under the statistical probability measure P . The
model is based on a probability space (Ω,G,P ), where Ω denotes the state space in
the economy. The information available to the market participants at time t is given
by the filtration (Gt)t∈[0,T ] generated by the marked inhomogeneous Poisson process
HZ = (H,Z) stopped at the first jump: Gt = σ(HZ

t ) for t ∈ [0,T ]. S = (St)t∈[0,T ]

denotes the price process of the traded defaultable zero coupon bond with maturity
date T and total loss in case of default given by

St =
Bt

BT

exp

{
−
∫ T

t

λ̂(s) ds

}
(1−Ht) (4)

if financial markets are frictionless and arbitrage-free. Since the hedging instrument
faces a total loss in case of default while the credit derivative only suffers a partial
loss, we call the hedging instrument the junior bond while we refer to the claim to
hedge as the senior bond.

The deterministic non-negative function λ̂ with
∫ T

0
λ̂(t) dt < ∞ can be estimated

via market values of defaultable financial instruments6 and specifies the default
intensity under the martingale measure Q ∈ Q. In particular,

EQ

[
St

Bt

∣∣∣∣Gs

]
= 11{τ>s}

(
St

Bt

·Q(τ > t|τ > s) + 0 ·Q(τ ≤ t|τ > s)

)

= (1−Hs)
Bt

BT

exp

{
−
∫ T

t

λ̂(u) du

}
exp

{
−
∫ t

s

λ̂(u) du

}
=

Ss

Bs

.

The discounted price process S/B admits the decomposition S/B = S0/B0+A+M ,
since

d

(
St

Bt

)
= λ̂(t)

St−

Bt

dt− St−

Bt

dHt =
St−

Bt

(λ̂(t)− λ(t))dt− St−

Bt

dH̃t

= dAt + dMt .

Here, H̃t = Ht −
∫ t∧τ

0
λ(s) ds denotes the compensated default process, A describes

the continuous drift component with A0 = 0, M denotes a square integrable P -mar-

tingale7 with M0 = 0, and finally S0 = exp
{
−
∫ T

0
λ̂(s) ds

}
/BT denotes the bond

6See, e.g., Jarrow and Turnbull (1995) and Jarrow, Lando and Turnbull (1997).
7Since the process H̃ is a square integrable martingale with [H̃,H̃ ] = H and since the process

S−/B is predictable with EP [
∫ T

0 (St−/Bt)
2 d[H̃,H̃ ]t] = EP [

∫ T

0 (St−/Bt)
2 dHt] < ∞, M is also a

square integrable martingale (see Protter, 1990, p. 142).
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price at t = 0. Due to properties of the conditional quadratic variation (see, e.g.,
Protter, 1990) it follows that

d〈M〉t =
(
St−

Bt

)2

d〈H̃〉t =
(
St−

Bt

)2

λ(t)d(t ∧ τ) =

(
St∧τ−

Bt∧τ

)2

λ(t)d(t ∧ τ) .

Since dAt = St−/Bt · (λ̂(t)− λ(t))dt = St∧τ−/Bt∧τ · (λ̂(t)− λ(t))d(t ∧ τ) we obtain

At =

∫ t

0

α̃s d〈M〉s with α̃t =
Bt∧τ

St∧τ−

(
λ̂(t)

λ(t)
− 1

)
,

and therefore S/B = S0/B0 +
∫
α̃ d〈M〉+M .

Now we determine hedging strategies for defaultable claims which minimize the risk
locally. More precisely, we solve Problem 2 as stated in the appendix. This rather
technical formulation is due to Schweizer (1991) and can be seen as continuous-time
analogue of Problem 1. To identify the LRM-hedge for credit derivatives we use the
minimal martingale measure8 P̂ defined by the density 9

Ẑt = E
{
−
∫

α̃ dM

}

t

= E
{∫ t∧τ

0

(
λ(s)− λ̂(s)

)
ds+

(
λ̂(τ)

λ(τ)
− 1

)
Ht

}

=

{
exp{

∫ t

0
(λ(s)− λ̂(s)) ds} , if t < τ,

λ̂(τ)
λ(τ)

exp{
∫ τ

0
(λ(s)− λ̂(s)) ds} , if t ≥ τ.

(5)

Thus, the distribution of the recovery payment remains unaffected by the measure
change and the default intensity under P̂ is given by λ̂. More precisely, from
Theorem T2 in Brémaud (1981, p. 165f.) it follows that (5) coincides with the
density corresponding to the measure change from P to Q. Hence, we have P̂ ≡ Q.
Moreover, since the orthogonality structure is preserved by the measure change
from P to P̂ , the distribution of the recovery payment remains unaffected as well.
In particular, at any time prior to default, the expected recovery payment in case
default occurs at a later date t ∈ (0,T ] is given by µZ(t) also under the minimal
martinagle measure P̂ . Note that the recovery payment is not priced under Q,

8The notion "minimal martingale measure" is motivated by the fact that apart from turning

S/B into a martingale this measure disturbs the overall martingale and orthogonality structures

as little as possible.
9For evaluating the stochastic exponential see, e.g., Protter (1990, p. 77).
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since Z(t) is not a tradable asset. The result that P̂ coincides with the pricing
measure Q was already obtained in Biagini and Cretarola (2007). However, in
Biagini and Cretarola (2007, 2009, 2012), it is the default intensity rather than the
recovery payment distribution that is unaffected by the measure change from P

to P̂ , since the process H̃ and, hence, the default intensity λ does not constitute
a tradable asset. In our model, the junior bond with default risk premium λ̂ is
traded and, therefore, priced under the pricing measure Q. We emphasize once
more that, in this work, we focus on the robust hedging of the recovery risk and
the incompleteness of our market model arises from the doubly-stochastic recovery
payment rather than from the default risk alone. In the remainder of this work,
we will derive explicit hedge ratios under the standing assumption of a doubly-
stochastic recovery payment, whereas, in Biagini and Cretarola (2007, 2009, 2012),
such explicit representations are provided only under the additional assumption
that the recovery payment is deterministic or even constant conditional on default.

The present value of the recovery payment conditional on the event that default
takes place in (t,T ] is given by the deterministic function

gZt = Ê

[
Bt

Bτ

Z(τ)11{τ≤T}

∣∣∣∣τ > t

]

= Ê

[
Bt

Bτ

Z(τ)11{τ≤T}

∣∣∣∣t < τ ≤ T

]
· P̂ (τ ≤ T |τ > t)

=

∫ T

t

Bt

Bu

exp

{
−
∫ u

t

λ̂(s) ds

}
λ̂(u)µZ(u) du. (6)

Likewise, the present value gF of the payment F being paid out in case of no default
up to time T and the present value gC of the future coupon payments of the senior
bond being paid out until the time of default are, respectively, given by

gFt =
Bt

BT

exp

{
−
∫ T

t

λ̂(s) ds

}
· F, (7)

gCt =

∫ T

t

Bt

Bu

exp

{
−
∫ u

t

λ̂(s) ds

}
dCu. (8)

Due to the results of Schweizer (1991) and with the convention

V F
t = Ê

[
Bt

BT

FT

∣∣∣∣Gt

]
,

Lemma 1 provides the LRM-hedge ratio via the Föllmer-Schweizer-decomposition,
see Föllmer and Schweizer (1991).
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Lemma 1 (FS-Decomposition of a Senior Bond)

The discounted cumulative value FT/BT of the senior bond (Z,C, F ) at maturity

has the following strong Föllmer-Schweizer-decomposition:

FT

BT

= F0 +

∫ T

0

hS
t d

(
St

Bt

)
+

LF
T

BT

,

where

hS
t =

d〈V F , S〉P̂t
d〈S, S〉P̂t

=

{
gC
t
+gF

t
+gZ

t
−µZ (t)

St−
: t ≤ τ,

0 : t > τ,

is the locally risk-minimizing hedge ratio, F0 = gC0 +gF0 +gZ0 is a constant, and LF/B

is a martingale which is orthogonal to M , given by LF
t =

∫ t

0
Bt

Bs
(Z(s)− µZ(s)) dH̃s.

3.2 Single-Stochastic Recovery Payment

We first consider the case of a single-stochastic recovery payment, i.e. Z(t) is a
deterministic function of time. The time-t value of the recovery payment under the
martingale measure Q, given the credit event takes place in (t,T ], is represented by
the deterministic function

gZt = EQ

[
Bt

Bτ

µZ(τ)11{τ≤T}

∣∣∣∣τ > t

]
=

∫ T

t

Bt

Bu

exp

{
−
∫ u

t

λ̂(s) ds

}
λ̂(u)Z(u) du. (9)

Replacing µZ(t) by Z(t) in Lemma 1 results in

Proposition 1 (Replication for Single-Stochastic Recovery)

The senior bond (Z,C, F ) with single-stochastic recovery is duplicated by the hedg-

ing strategy H = (hS,hB) with

hS
t =

gCt + gFt + gZt − Z(t)

St−
,

hB
t =

V F
t−

Bt

− hS
t · St−

Bt

=
C̃t

Bt

+
Z(t)

Bt

,

for t ≤ τ , and hS
t = 0, hB

t = hB
τ for t > τ .

According to this duplication strategy at every point in time t the value of the
money market accounts equals the cumulative value of the senior bond in the case
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of default at time τ = t. The value of the position in the defaultable zeros at time
t < τ equals the expected future payments of the senior bond less the discounted
recovery payment in the case of default at time t, i.e.

hS
t St = gCt + gFt + gZt − Z(t).

The expected recovery rate given that default occurs in (t,T ], denoted by µ̃δ(t), is
given by

µ̃δ(t) =

∫ T

t

δ(u)λ̂(u) exp

{
−
∫ u

t

λ̂(s)ds

}
du.

It is worth mentioning that, see Müller (2008), in the special case when the recovery
rate is constant, δ(u) = δ for all default times τ , we have

µ̃δ(t) = δ

[
− exp

{
−
∫ u

t

λ̂(s)ds

}]T

t

= δ

(
1− BT

Bt

St

)
, (10)

and it will then be possible to replicate the senior bond (Z,C, F ) with single-
stochastic recovery by a static hedge: Buy

hS = (1− δ)(C̃T + F )/BT

junior bonds (with total loss in case of default) and buy

hB = δ(C̃T + F )/BT

money market accounts.

3.3 Doubly-Stochastic Recovery Payment

We now consider the case of a doubly-stochastic recovery payment, i.e. Z is now
a stochastic process. Every probability measure Q ∈ Q with corresponding default
intensity λ̂ and arbitrary distribution of the recovery rate with values in [0,1] rep-
resents an equivalent martingale measure if the null sets of the distribution of the
recovery rate under Q and P are the same. The financial market will be arbitrage-
free. But it will be incomplete if the recovery rate is not known P -a.s. given that
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default occurs in τ = t. For this reason defaultable claims with a doubly-stochastic
recovery can not be duplicated. The incompleteness of the financial market model
can also be recognized as follows: There are two sources of risk – the default time
and the amount of the recovery are uncertain. But there exists only one financial
instrument (besides the money market account) for hedging the default risk.

Proposition 2 (LRM-Hedge)

The locally risk-minimizing hedge of the senior bond (Z,C, F ) amounts to

hS
t =

gCt + gFt + gZt − µZ(t)

St−

, (11)

hB
t =

V F
t

Bt

− hS
t · St−

Bt

=
C̃t

Bt

+
µZ(t)

Bt

. (12)

After default, i.e. for t > τ , we have

hS
t = 0 , hB

t = C̃τ + Z(τ)/Bτ .

In case of a defaultable claim with single-stochastic recovery the LRM-hedge col-
lapses to the duplication strategy given in Proposition 1. According to this dupli-
cation strategy at every point in time t the value of the money market accounts
equals the cumulative value of the senior bond in the case of default at time τ = t.
At default the share in the money market account makes a jump in the amount of
(Z(τ)−µZ(τ))/Bτ such that the value of the hedging strategy at maturity coincides
with the cumulative value of the senior bond. The value of the position in the junior
bonds at time t < τ equals the expected future payments of the senior bond less
the expected recovery payment in the case of default at time t, i.e.

hS
t St = gCt + gFt + gZt − µZ(t).

Because of the relation Ct(H) = F0 + LF
t for all t ∈ [0,T ], the LRM-hedge is self-

financing at every point in time before and after default. But at default money
accrues or flows out, depending on the difference between realized recovery pay-
ment, Z(τ), and the expected payment at default, µZ(τ). On average, the locally
risk-minimizing hedging strategy is self-financing, that is, the strategy is mean-self-
financing.

If the recovery is single-stochastic the LRM-hedge will even be self-financing and
therefore will collapse to a replication strategy. For the special case, see Müller
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(2008), that the expected recovery rate does not depend on the default time, i.e.
µδ(t) = µδ at 0 < t ≤ T , and hence µ̃δ(t) = µδ(1−BT/Bt St−) for t ≤ τ , the locally
risk-minimizing hedge simplifies to a static hedge:

H = (hS, hB) = ( (C̃T + F )/BT (1− µδ), (C̃T + F )/BTµ
δ ) .

Proposition 2 shows that the locally risk-minimizing hedge depends only on the
expected payment at default under the statistical probability measure, but not on
other details of the probability distribution of the recovery. Hence we achieve the
following result:

Proposition 3 (Impact of Recovery Modeling on LRM-Hedge)

The LRM-hedge for a senior bond (Zd,C,F ) with a doubly-stochastic recovery equals

the LRM-hedge for a senior bond (Zs, C, F ) with single-stochastic recovery for all

points in time until default, provided that the expected recovery payments coincide

under the statistical probability measure, i.e. µZd

(t) = µZs

(t) = Zs(t) for every

0 < t ≤ T .

Example 1 We consider a financial market where a defaultable zero bond of a firm
with total loss at default and maturity 10 years is traded. Furthermore, we assume
a flat term structure with r = 5 %. Default time is exponentially distributed with
intensity λ = 0,05 and λ̂ = 0,20 under the statistical probability measure and the
martingale measure, respectively. We now calculate hedging strategies of a default-
able zero bond with recovery payment at default. We assume a single-stochastic,
even constant recovery rate of δs = 40 %, and a doubly-stochastic recovery rate
with an expected value of µδd = 40 %.

Figure 3 shows the locally risk-minimizing hedging strategy of a zero with single-
and doubly-stochastic recovery. We assume, that the firm defaults after 5 years and
that the realized recovery rate amounts to 50 % in the case of doubly-stochastic
recovery modeling. According to Proposition 3 the LRM-hedges are equal until
default for both the single- and the doubly-stochastic recovery case. After the
credit event the shares in the money market account of the locally risk-minimizing
strategies differ since the realised payments at default are different.

If an investor prefers a self-financing hedging strategy, the so-called super-hedging

strategy which assures a liquidation value at maturity at least as high as the pay-
off of the derivative, i.e. VT (H) ≥ FT P -a.s., then the recovery modeling has the
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Figure 3: LRM-hedges when default occurs at τ = 5

The left figure illustrates the LRM-hedge for a defaultable zero bond with constant

recovery. This hedge corresponds to the duplication. The right figure depicts the

LRM-hedge for a defaultable zero bond with an uncertain recovery payment when default

occurs after five years with a realized recovery rate of 50 %. The solid line describes the

hedge ratio hS and the dashed line the number of money market accounts hB during

time.
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following impact on the hedging strategy. Assuming a constant recovery payment
of 0,40 the super-hedge corresponds to the duplication strategy H = (hS, hB) =

(0,60 ; 0,40/BT ) as well as the LRM-hedge. If the payment at default is uncertain,
the super-hedge depends on the distribution of the recovery, more precisely, on
the domain of the recovery payment. Assuming that the recovery payment can
reach values on [0, 1] and [0, 0,95], respectively, the resulting super-hedges are H =

(hS, hB) = (0; 1/BT ) and H = (hS, hB) = (0,05 ; 0,95/BT ), respectively. �

3.4 Why Does Only the First Moment Matter?

At first glance Proposition 3 seems to contradict the result obtained by Grünewald
and Trautmann (1996) when deriving LRM-strategies for stock options in the pres-
ence of jump risk. In their setting, the LRM-strategy depends additionally on the
variance of the stock’s jump amplitude. This key difference is due to the fact that
in our model default of the firm implies that the underlying instrument’s price
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jumps always to zero while in the Merton (1976) jump diffusion setting assumed
by Grünewald and Trautmann (1996), the price of the stock underlying the option
jumps to an arbitrary price level.

We now illustrate the effect on the LRM-strategy if the junior bond does not become
worthless at default. So suppose now that the junior bond price jumps to a random
fraction of its price just prior to default, i.e. we now impose the so-called fractional
recovery of market value assumption. Thus

Sτ

Bτ

= δS
Sτ−

Bτ

for some random variable δS with 0 ≤ δS ≤ 1. In this case, we get

d 〈S,S〉P̂t = (λ̂(t) + σ2
jump)

(
St−

Bt

)2

dt,

where σ2
jump denotes the variance of the junior bond jump amplitude. We then have

hS
t =

d〈V F , S〉P̂t
d〈S,S〉P̂t

=
λ̂(t)Ê[δS]

λ̂(t) + σ2
jump

· g
C
t + gFt + gZt − µZ(t)

St−
,

i.e. the LRM-strategy then also depends on the second moment of the jump am-
plitude. Moreover, as shown in Grünewald and Trautmann (1996, p. 12 f.), the
minimal martingale measure will then be a signed measure unless the market price
of risk lies in the interval [−1,0], i.e. P̂ will only be an equivalent martingale mea-
sure if the expected excess return over the riskless rate is negative. Otherwise P̂

will attach negative probabilities to certain events. However, Grünewald and Traut-
mann (1996) show in their simulation study that these events only play a minor
role in case realistic paramters are used. Moreover, the minimal measure can only
be signed if it is the hedging instrument that is exposed to a random jump ampli-
tude. In our applications, P̂ will never be signed since the corresponding martingale
density is not affected by the senior bond, but only by the junior bond.

4 Extensions

Explicit solutions of hedging strategies for credit derivatives are rare in the liter-
ature. For instance, Bielecki et al. (2008) prove the existence of a hedging strat-
egy for a credit derivative (Z,C, F ) in a general setup (including both stochastic
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interest and stochastic default rates), but do not provide the hedge ratio in closed-
form. Biagini and Cretarola (2009) derive locally risk-minimizing strategies, but
give closed-form solutions only for the special case of null interest rates, no coupon
payments and a single-stochastic recovery payment.

So far, the recovery payment and the time of default were the only random quantities
in our model as well. In Section 4.1, we derive the LRM-strategy in case the interest
rate is also stochastic while in Section 4.2 we consider the case of a stochastic default
intensity instead. In Section 4.3, r and λ̂ are then assumed to be both stochastic
but independent. This independence assumption, however, will turn out to be no
major restriction (see Section 4.3).

4.1 Stochastic Interest Rates

We now extend our basic model to the case of a non-trivial reference filtration
to investigate to what extent the hedging strategy will be affected. Due to this
additional source of risk, we now have Gt = Ft ∨ Ht, where Ft describes the time-t
information about the evolution of the interest rate and the default rate and Ht

describes the time-t market information about whether default has occured and the
recovery risk. In particular, we assume Ft = σ(Ŵt) for some Brownian motion
Ŵ under P̂ . Denote by G the conditional survival probability with respect to the
reference filtration under the minimal martinagle measure, i.e. Gt = P̂ (τ > t|Ft).

The discounted price of the junior bond at time t ∈ [0,T ] is now given by

St

Bt

= (1−Ht) G
−1
t Ê

[
GT

BT

∣∣∣∣Ft

]
(13)

and its P̂ -dynamics are now given by

d

(
St

Bt

)
= (1−Ht)G

−1
t dmS

t − St−

Bt−
dH̃t,

where the martingale mS is given by

mS
t = Ê

[
GT

BT

∣∣∣∣Ft

]

for all t ∈ [0,T ], cf. Proposition 2 in Blanchet-Scalliet and Jeanblanc (2004).
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Consider the (Ft)-martingale m given by

mt = Ê

[∫ T

0

1

Bu

Guλ̂(u)µ
Z(u) du+GT

1

BT

F +

∫ T

0

1

Bu

GudCu

∣∣∣∣Ft

]
.

Denote by ξm and ξS the predictable processes appearing in the martingale repre-
sentations of the processes m and mS, i.e.

mt = m0 +

∫ t

0

ξms dŴs , (14)

mS
t = m0 +

∫ t

0

ξSs dŴs .

Lemma 2 provides the LRM-hedge ratio via the Föllmer-Schweizer-decomposition
in case the reference filtration (Ft) is non-trivial.

Lemma 2 (FS-Decomposition in case of a Brownian Reference Filtration)

The discounted cumulative value FT/BT of the senior bond (Z,C, F ) at maturity

has the following strong Föllmer-Schweizer-decomposition:

FT

BT

= F0 +

∫ T

0

hS
t d

(
St

Bt

)
+

LF
T

BT

,

where

hS
t =

d〈V F , S〉P̂t
d〈S, S〉P̂t

= (1−Ht)

(
ξmt
ξSt

+
gCt + gFt + gZt − µZ(t)

St−

)
,

is the locally risk-minimizing hedge ratio, F0 = gC0 +gF0 +gZ0 is a constant, and LF/B

is a martingale which is orthogonal to M , given by LF
t =

∫ t

0
Bt

Bs
(Z(s)− µZ(s)) dH̃s.

Proposition 4 (LRM-Hedge in case of a Brownian Reference Filtration)

In case of a non-trivial reference filtration, the locally risk-minimizing hedging strat-

egy of the senior bond (Z,C,F ) is given by

hS
t =

ξmt
ξSt

+
gCt + gFt + gZt − µZ(t)

St−

, (15)

hB
t =

V F
t−

Bt−
− hS

t · St−

Bt−
,
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for t ≤ τ , and

hS
t = 0,

hB
t =

∫ τ

0

1

Bs

dCs +
1

Zτ

,

for t > τ .

From Proposition 4 we see that in order to obtain the hedge ratio, we have to
calculate the processes ξm and ξS.

Suppose now that the interest rate follows a stochastic process while the default
rate is a deterministic function. For gZ, gF and gC , we then have

gZt =

∫ T

t

Ê

[
Bt

Bu

∣∣∣∣Ft

]
exp

{
−
∫ u

t

λ̂(s) ds

}
λ̂(u)µZ(u) du, (16)

gFt = Ê

[
Bt

BT

∣∣∣∣Ft

]
exp

{
−
∫ T

t

λ̂(s) ds

}
· F, (17)

gCt =

∫ T

t

Ê

[
Bt

Bu

∣∣∣∣Ft

]
exp

{
−
∫ u

t

λ̂(s) ds

}
dCu, (18)

respectively, where we have used Fubini’s Theorem.

Example 2 Suppose the short rate follows the CIR model under the minimal
martingale measure, i.e.

drt = κr(θr − rt)dt+ σr√rtdŴt,

where κr, θr, σr, r0>0.

Thus

Ê

[
1

BT

∣∣Ft

]
= exp

{
−
∫ t

0

rs ds− rtC(t,T )−D(t,T )

}
, (19)

where,

C(t,T ) =
sinh(γr(T − t))

γr cosh(γr(T − t)) + 1
2
κr sinh(γr(T − t))

, (20)

D(t,T ) = − 2κr

(σr)2
ln

(
γre

1

2
κr(T−t)

γr cosh(γr(T − t)) + 1
2
κr sinh(γr(T − t))

)
, (21)

γr = 1
2

√
(κr)2 + 2(σr)2, sinh u = eu−e−u

2
, and cosh u = eu+e−u

2
.
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The discounted junior bond price then follows the dynamics

St

Bt

= (1−Ht) σt

St

Bt

dŴt −
St−

Bt−
dH̃t,

where the junior bond price volatility is given by

σt = −Cr(t,T ) σr√rt,

for all t ∈ [0,T ], cf. Cox, Ingersoll and Ross (1985, p. 394). In particular,

ξSt = Gt σt St.

Note that Gt = exp{−
∫ t

0
λ̂(s) ds} for all t ∈ [0,T ] in the present case, and m writes

mt = Ê

[
1

BT

∣∣∣∣Ft

]
GT · F +

∫ t

0

Ê

[
1

Bs

∣∣∣∣Ft

]
Gs λ̂(s) µ

Z(s) ds

+

∫ t

0

Gs

Bs

dCs +

∫ T

t

Ê

[
1

Bs

∣∣Ft

]
Gs dCs

=: u(t,rt).

From Proposition A.1, it follows that the process ξm is given by

ξmt = Btσ
r√rt

∂

∂r
u(t,rt)

= σr√rt ·
[
−C(t,T )Ê

[
1

BT

∣∣Ft

]
GT · F −

∫ T

0

C(t,s)Ê

[
1

Bs

∣∣Ft

]
Gs

· λ̂(s) µZ(s) ds−
∫ T

t

C(t,s)Ê

[
1

Bs

∣∣Ft

]
Gs dCs

]
.

�

We now discuss the sensitivity of the hedge ratio, the position in the money market
and the optimal portfolio value w.r.t. the interest rate level. In particular, we will
compare the deterministic and the stochastic interest rates case. The key difference
between the LRM-hedges in these two cases is the first term on the right-hand
side of (15). In case of a trivial reference filtraton, the LRM-hedge portfolio is
only adjusted with respect to the jump-to-default risk and the recovery risk, cf.
(11). The additional term in (15) accounts for the diffusion risk arising from the
non-trivial reference filtration.
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Figure 4 (a) shows that hedge ratio of the LRM-strategy is an increasing function of
the interest rate level while the position in the money market account is decreasing
in the interest rate level, see Figure 4 (b). This result seems to be counterintuitive
at first glance, since one would expect the position in the money market account
to be higher for large r due to the higher interest on an investment in the (locally)
riskless position. However, we can see from (12) that through the position in the

Figure 4: Sensitivity of the LRM-hedge using the junior bond w.r.t. the interest

rate.

The figure shows the initial hedge ratio, the initial position in the money market account

and the initial portfolio value as a function of the initial interest rate level for an

expected recovery payment of µZ = 20 (solid lines), µZ = 50 (dashed lines) and µZ = 80

(dashed-dotted lines). The blue graphs illustrate the case of deterministic interest rates

for parameters t = 0, T = 1, λ̂ = 2, C = 7 and F = 100. The red graphs illustrate the

case of stochastic interest rates with CIR dynamics for parameters κr = 0.5, θr = 0.05

and σr = 0.2.
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(b) Initial position in the money market account.
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(c) Initial portfolio value.
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money market account, the LRM-hedge only covers the coupon payments up to
current time plus the expected recovery payment if default was to occur within
the next instant. This position is decreasing in the interest rate level. In case the
interest rate is stochastic, we see from Figure 4 (b) that the additional term on the
right-hand side of (15) is positive, i.e. this additional source of risk (the volatility
of the uncertain interest rate) causes a rebalancement of the LRM-hedge such that
more money is invested in the junior bond subject to total loss in case of default and
less money is invested in the (locally) riskless money market account. Note that, for
a very high interest rate level, the position in the money market account is higher
in the stochastic interest rates case. This is due to the mean-reversion property of
the CIR dynamics, i.e. if r0 is much larger than the interest rates mean θr, the
interest rate soonly will fall back in direction of its long-term average. Hence, the
investor receives an unusally high return on his investment in the money market
account and therefore the LRM-hedge puts more weight on it in this case.

Comparing the blue and the red graphs in Figure 4 (a), one can also see that
treating the interest rate (which is stochastic in reality) as a constant will decrease
the number of zeros (with total loss in case of default) held in the hedging strategy
below the optimal level, hence leading to a position less risky than necessary. Note
that from Figure 4 (c), we see that the optimal discounted portfolio value is also
decreasing in the interest rate level. So put another way, since the riskless rate is
stochastic in reality, the senior bond will be underestimated in the deterministic
interest rates model. Therefore, modeling the interest rate as a stochastic process
will reduce the hedging costs and thus improve the hedging quality.

4.2 Stochastic Intensities

Suppose now that the default rate follows a stochastic process while the interest
rate is a deterministic function. The martingale mS can then be written

mS
t =

1

BT

Ê
[
GT

∣∣Ft

]
,

since r and hence B is deterministic now.
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For gZ , gF and gC, we now have

gZt =

∫ T

t

Bt

Bu

Ê

[
exp

{
−
∫ u

t

λ̂sds

}
λ̂u

∣∣Ft

]
µZ(u) du, (22)

gFt =
Bt

BT

Ê

[
exp

{
−
∫ T

t

λ̂s ds

} ∣∣Ft

]
· F, (23)

gCt =

∫ T

t

Bt

Bu

Ê

[
exp

{
−
∫ u

t

λ̂s ds

} ∣∣Ft

]
dCu, (24)

respectively.

Example 3 Suppose now that it is the intensity that follows the CIR model under
the minimal martingale measure, i.e.

dλ̂t = κλ̂(θλ̂ − λ̂t)dt+ σλ̂

√
λ̂tdŴt,

where κλ̂, θλ̂, σλ̂, λ̂0 > 0. Thus

Ê

[
exp

{
−
∫ T

0

λ̂s ds

} ∣∣Ft

]
= exp

{
−
∫ t

0

λ̂s ds− λ̂tC(t,T )−D(t,T )

}
, (25)

where C(t,T ) and D(t,T ) are given by (20) and (21) with σr replaced by σλ̂ and

γλ̂ = 1
2

√
(κλ̂)2 + 2(σλ̂)2.

The discounted junior bond price now follows the dynamics

St

Bt

= (1−Ht) σt

St

Bt

dŴt −
St−

Bt−

dH̃t,

where the junior bond price volatility is given by

σt = −C λ̂(t,T ) σλ̂

√
λ̂t,

for all t ∈ [0,T ], see Cox, Ingersoll and Ross (1985, p. 394). In particular,

ξSt = Gt σt St.

Moreover, we now have

mt =
F

BT

Ê[Gs|Ft] +

∫ T

0

1

Bs

Ê[Gsλ̂s|Ft]µ
Z(s) ds+

∫ T

0

1

Bs

Ê[Gs|Ft] dCs

=: u(t,rt).

From Brigo and Mercurio (2006, p. 822), we get
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Ê[Gsλ̂s|Ft]

= − ∂

∂s
Ê[Gs|Ft]

= Ê[Gs|Ft] ·
[(

1− κλ̂C(t,s) +
(σλ̂)2

2
C2(t,s)

)
λ̂t + κλ̂θλ̂C(t,s)

]
(26)

Figure 5: Sensitivity of the LRM-hedge using the junior bond w.r.t. the intensity.

The figure shows the initial hedge ratio, the initial position in the money market account

and the initial portfolio value as a function of the initial default rate for an expected

recovery payment of µZ = 20 (solid lines), µZ = 50 (dashed lines) and µZ = 80

(dashed-dotted lines). The blue graphs illustrate the case of deterministic default rates

for parameters t = 0, T = 1, r = 0.05, C = 7 and F = 100. The red graphs illustrate the

case of stochastic default rates with CIR dynamics for parameters κλ̂ = 0.5, θλ̂ = 1.25

and σλ̂ = 0.4.
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(b) Initial position in the money market account.
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(c) Initial portfolio value.
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From Proposition A.1, it follows that the process ξm is given by

ξmt = Btσ
r

√
λ̂t

∂

∂λ̂
u(t,λ̂t)

= σr

√
λ̂t ·

[
−C(t,T )

1

BT

Ê[GT |Ft] · F +

∫ T

t

1

Bu

∂

∂λ̂
Ê[Gsλ̂s|Ft]µ

Z(s) ds

−
∫ T

t

C(t,s)
1

Bs

Ê[Gs|Ft] dCs

]

Finally, we have

∂

∂λ̂
Ê[Gsλ̂s|Ft]

= −C(t,s) · Ê[Gsλ̂s|Ft] + Ê[Gs|Ft] ·
(
1− κλ̂C(t,s) +

(σλ̂)2

2
C2(t,s)

)
. (27)

�

Figure 5 (a) shows the hedge ratio of the LRM-strategy as a function of the in-
tensity. One can see that the hedge ratio is an increasing function of the default
rate and that it is typically higher in the stochastic intensity case. Thus, the effect
on the hedge ratio of an additional source of (diffusion) risk is the same no matter
whether the latter comes from the interest or the default rate, cf. Figure 4 (a). An
additional source of risk will always increase the optimal number of junior bonds
held in the LRM-hedging portfolio. If the current default rate λ̂0 is much higher
than its long-term mean θλ̂, the LRM-strategy anticipates that in will move back
towards its mean, whereas this cannot happen if the default rate is deterministic.
That is why the blue graphs lie above the red graphs for high λ̂0. However, the
effect on the position in the money market account is different when the additional
source of risk comes from the default rate rather than the interest rate, cf. 5 (b).
In the deterministic default rates case, we see from (12) that the position in the
money market account does not depend on the default rate level, since through
this position the LRM-hedge only covers the coupon payments up to current time
plus the expected recovery payment if default was to occur within the next instant.
However, in the stochastic default rates case, the position in the money market
account is not decreasing but increasing in the intensity, since the additional term
on the right-hand side of (15) is decreasing in λ̂. From Figure 5 (b), we can see
most clearly how the LRM-hedge accounts for the mean-reversion property of the
stochastic intensity. If λ̂ < θλ̂, i.e. it is currently unlikely that default occurs,

30



the position in the (locally) riskless money market account is lower than in the
deterministic default rates case. On the contrary, if λ̂ > θλ̂, i.e. default is likely
to occur, the LRM-strategy puts more weight on the position hB compared to the
deterministic default rates case. Analogously, the optimal portfolio value for the
LRM-strategy is higher in the stochastic default rates case if the current default in-
tensity lies above its long-term average, λ̂ > θλ̂, and it is higher in the deterministic
default rates case if the current default intensity lies below its long-term average,
λ̂ < θλ̂.

4.3 Stochastic Interest Rates and Stochastic Intensities

We now assume that both the interest and the default rate follow a stochastic
process and, in particular, that Ft = σ(W r

t ,W
λ̂
t ) for two independent10 Brownian

motions.

The discounted junior bond price follows the dynamics

d

(
St

Bt

)
= (1−Ht)G

−1
t dmS

t − St−

Bt−

dH̃t,

where the martingale mS is now given by

mS
t = Ê

[
GT

BT

∣∣Ft

]

with both B and G inside the conditional expectation since both r and λ̂ are
stochastic now. The martingale representations of the processes mS and m now
take the form

mt = m0 +

∫ t

0

ξm,r
s dW r +

∫ t

0

ξm,λ̂
s dW λ̂,

mS
t = m0 +

∫ t

0

ξS,rs dW r +

∫ t

0

ξS,λ̂s dW λ̂,

for (Ft)-predictable processes ξ·,·.

10Brigo and Mercurio (2006, p. 817) consider the case of two correlated Brownian motions with

correlation coefficient ρ, i.e. dW rdW λ̂ = ρdt, and show that there exists no explicit representation

of the zero bond price in case ρ 6= 0, but that the impact of ρ is negligible. Thus this independence

assumption is no major restriction.
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Lemma 3 (FS-Decomposition, Case of a Two-Dimensional BM)

The discounted cumulative value FT/BT of the senior bond (Z,C, F ) at maturity

has the following strong Föllmer-Schweizer-decomposition:

FT

BT

= F0 +

∫ T

0

hS
t d

(
St

Bt

)
+

LF
T

BT

,

where

hS
t =

d〈V F , S〉P̂t
d〈S, S〉P̂t

= (1−Ht)

(
ξmt
ξSt

+
gCt + gFt + gZt − µZ(t)

St−

)
,

is the locally risk-minimizing hedge ratio, F0 = gC0 + gF0 + gZ0 is a constant, LF/B

is a martingale which is orthogonal to M , given by LF
t =

∫ t

0
Bt

Bs
(Z(s)− µZ(s)) dH̃s,

and the processes ξm and ξS are given by

ξm = ξm,r
t + ξm,λ̂

t ,

ξS = ξS,rt + ξS,λ̂t .

This yields the LRM-strategy in case both the interest rate and the intensity are
stochastic.

Proposition 5 (LRM-Hedge, Case of a Two-Dimensional BM)

In case of both stochastic interest and default rates, the locally risk-minimizing

hedging strategy of the senior bond (Z,C,F ) is given by

hS
t =

ξmt
ξSt

+
gCt + gFt + gZt − µZ(t)

St−
,

hB
t =

V F
t−

Bt

− hS
t · St−

Bt

,

for t ≤ τ , and

hS
t = 0,

hB
t =

∫ τ

0

1

Bs

dCs +
Zτ

Bτ

,

for t > τ .
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Example 3 Suppose both the interest rate and the intensity follow a CIR-process,
i.e.

drt = κr(θr − rt)dt+ σr√rtdŴ
r
t ,

dλ̂t = κλ̂(θλ̂ − λ̂t)dt+ σλ̂

√
λ̂tdŴ

λ̂
t .

The martingale m can be written

mt = Ê

[
GT

BT

F +

∫ T

0

Gs

Bs

Zsλ̂sds+

∫ T

0

Gs

Bs

dCs

∣∣Ft

]

= F · Ê
[

1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
+ Ê

[∣∣Ft

] ∫ T

0

1

Bs

Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

+

∫ T

0

Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs

=: u(t,rt,λ̂t).

From Proposition A.2, it follows that the processes ξm,r and ξm,λ̂ are given by

ξm,r
t = σr√rt ·

∂

∂r
u(t,r,λ̂),

ξm,λ̂
t = σλ̂

√
λ̂t ·

∂

∂λ̂
u(t,r,λ̂).

Since

∂

∂r
u(t,r,λ̂)

= −Cr(t,T ) Ê

[
1

BT

∣∣Ft

]
· F · Ê

[
GT

∣∣Ft

]
−
∫ T

0

Cr(t,s)Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

−
∫ T

t

Cr(t,s) Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs

and

∂

∂λ̂
u(t,r,λ̂) = −C λ̂(t,T ) · F · Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]

+

∫ T

0

Ê

[
1

Bs

∣∣Ft

]
∂

∂λ̂
Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

−
∫ T

t

C λ̂(t,s) Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs,
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we have

ξm,r
t = σr√rt ·

[
−Cr(t,T ) Ê

[
1

BT

∣∣Ft

]
· F · Ê

[
GT

∣∣Ft

]

−
∫ T

0

Cr(t,s)Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

−
∫ T

t

Cr(t,s) Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs

]
, (28)

Figure 6: Sensitivity of the LRM-hedge using the junior bond w.r.t. the interest

rate volatility and the default rate volatility.

The figure shows the initial hedge ratio, the initial position in the money market account

and the initial portfolio value as a function of the initial interest rate volatility and the

initial default rate volatility for parameters t = 0, T = 2, C = 8, F = 100, r0 = 0.05,

κr = 2.5, θr = 0.05, λ̂0 = 0.35, κλ̂ = 0.5 and θλ̂ = 0.35.
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(b) Initial position in the money market account.
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(c) Initial portfolio value.
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ξm,λ̂
t = σλ̂

√
λ̂t ·

[
−C λ̂(t,T ) · F · Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]

+

∫ T

0

Ê

[
1

Bs

∣∣Ft

]
∂

∂λ̂
Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

−
∫ T

t

C λ̂(t,s) Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs

]
, (29)

Since the martingale mS can be written

mS
t = Ê

[
GT

∣∣Ft

]
Ê

[
1

BT

∣∣Ft

]

=: v(t,rt,λ̂t),

it follows from Theorem 15.4.1 in Bruti-Liberati and Platen (2010) that the pro-
cesses ξS,r and ξS,λ̂ are given by

ξS,rt = σr√rt ·
∂

∂r
v(t,r,λ̂),

ξS,λ̂t = σλ̂

√
λ̂t ·

∂

∂λ̂
v(t,r,λ̂).

Since

∂

∂r
v(t,r,λ̂) = −Cr(t,T ) Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
,

∂

∂λ̂
v(t,r,λ̂) = −C λ̂(t,T ) Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
,

we get

ξS,rt = −σr√rt C
r(t,T ) Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
, (30)

ξS,λ̂t = −σλ̂

√
λ̂t C

λ̂(t,T ) Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
. (31)

Plugging (19), (25), (26) and (27) into (28)-(31) yields the hedge ratio. �

Figure 6 depicts the sensitivity of the LRM-hedge w.r.t. the interest rate volatility
and the default rate volatility. From Figure 6 (c), we can see that the optimal
portfolio value is slightly increasing in the interest rate volatility and considerably
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increasing in the default rate volatility. This is due to the fact that an increase
in either of the two volatilities will also increase the value of the senior bond, and
hence the optimal portfolio value must also rise. From Figure 6 (a) and (b) we
see how the LRM-hedge accounts for a higher diffusion risk. Consider first the
interest rate volatility. If σr increases, so does the optimal portfolio value and the
LRM-hedge will then put more weight on the position in the locally riskless money
market account and less weight on the position in the junior bond. If the optimal
portfolio value is higher due to a higher default rate volatility, both the position in
the junior bond and the position in the money market accoutn will be lower. This
is due to the fact that a higher default rate volatiliy will not only increase the value
of the senior bond and, hence, the optimal portfolio value but also the value of the
junior bond.

5 Simulation of Hedging Costs

In this section, we run a simulation with 10,000 iterations to test the impact of
the different model assumptions on the cumulative hedging costs. We also test the
LRM-strategy against strategies using alternative hedging instruments such as CDS
contracts, CoCo-bonds, a junior bond of a comparable firm, and a credit index.

If not specified otherwise, we use the following parameters: The senior bond (C, F, Z)

is assumed to pay an annualized coupon at rate c = 0.08 and to have a promised
payment of F = 100. The doubly-stochastic fraction of this payment recoverd in
case of default is assumed to have a Beta (12, 12)-distribution, i.e. µZ(t) = 50 for all
t. We assume a maturity of T = 2 years and that the hedging strategies are adjusted
on a weekly basis, i.e. we consider the trading dates t0 = 0 < t1 < ... < tn = 2 with
ti − ti−1 = 1/52 for all i = 1,...,104.

For the case of both deterministic interest and default rate, we use constant rates
of r = 0.05 and λ̂ = 0.35. To simulate the CIR-model for the stochastic interest
respectively default rate, we proceed as described by Glasserman (2003, p. 120ff.).
As is mentioned there, a simple Euler discretization of the form

r(ti+1) = r(ti) + κr(θr − r(ti)) · (ti+1 − ti) + σr
√

r(ti)(ti+1 − ti)Z
r
i+1

λ̂(ti+1) = λ̂(ti) + κλ̂(θλ̂ − λ̂(ti)) · (ti+1 − ti) + σλ̂

√
λ̂(ti)(ti+1 − ti)Z

λ̂
i+1,

where Zr
1 ,...,Z

r
n and Z λ̂

1 ,...,Z
λ̂
n are independent standard normal random variables,

will still produce negative values, even if the expressions under the square root are
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replaced by their positive parts. We therefore use the algorithm from Glasserman
(2003, p. 124) that allows to sample from the exact transition law of the processes.
The respective parameters are given by θr = 0.05, κr = 0.01, σr = 0.01 and
r0 = 0.05 for the interest rate and θλ̂ = 0.35, κλ̂ = 0.25, σλ̂ = 0.4 and λ̂0 = 0.35 for
the default rate. We first examine the basic model with both deterministic interest
and default rate. From Table 2 we see that the hedger, on average, faces nearly zero
additional costs apart from the initial investment in the amount of the initial value
V F
0 of the senior bond (C, F, Z) to set up the strategy, i.e. the strategy is mean-

self-financing. Additional costs accrue if default occurs before maturity and the
doubly-stochastic recovery payment deviates from its expected value of µZ(t) = 50.
For instance, the highest cumulative hedging costs of 107.42 in the simulation are
due to realized recovery payment of 85.92. In this case, prior to default the position
hB
t in the money market account from Proposition 2 is far too low. Conversely,

the lowest cumulative hedging costs of 49.48 in the simulation correspond to a
realized recovery payment of only 20.75. In this case, the position in the money
market account was far too high. If no default occurs prior to maturity, the hedging
strategy reduces to the replication strategy in case of a single-stochastic recovery
payment. Hence the strategy is self-financing and no additional costs accrue, i.e.
the cumulative costs equal the initial costs of 78.68. In case only the interest rate
is stochastic, the hedging costs remain nearly unaffected, see Table 2, since the
interest rate risk is perfectly hedgeable, and the small differences in the hedging
costs are thus solely due to the discretization error. In contrast, if the default rate
is stochastic, the hedging costs are affected, especially in iterations where no default
occurs, i.e. when the hedging strategy is adjusted for variation in the intensity at
any trading date, but this this turns out to have been unnecessary since there is
no default. Moreover, the simulation results show that the hedging costs of the
LRM-strategy are even slightly lower in the practically more relevant case of using
stocks as the hedging instrument.

Let us now consider the alternative strategies. First, we consider an extension of
the duplication strategy using CDS contracts by Bielecki, Jeanblanc and Rutkowski
(2007) to the case of doubly-stochastic recovery payment, hence to an incomplete
market setting. The corresponding LRM-strategy involves a short position in CDS
contracts and a long position in the money market account. It can be seen from
Table 2 that the hedging costs due to the discretization are very small. The variance
is smaller than for all other strategies considered and both the minimum and the
maximum costs are much closer to the expected costs, see also part (a) of Figure
8. However, as mentioned by Bielecki, Jeanblanc and Rutkowski (2008, p. 2512f.),
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Table 2: Discounted cumulative hedging costs when hedging a senior bond.

Hedging Instruments

Total Costs Junior Bond Stock CDS Junior Bond Credit Index
r,λ̂ determ. r stoch. λ̂ stoch. r&λ̂ stoch. comp. firm

(Initial Costs) (78.68) (78.68) (79.81) (79.80) (78.68) (78.68) (78.68) (78.68)
Mean 78.70 78.71 79.64 79.65 78.60 79.78 78.91 79.09

Std Dev 6.47 6.52 6.53 6.53 8.53 1.69 15.43 30.56
Skewness 0.01 0.23 0.50 0.38 -0.05 -1.13 -0.90 -0.14
Kurtosis 5.63 5.57 5.48 5.50 3.34 9.81 4.21 1.24

Min 49.48 52.78 49.32 49.52 42.80 67.59 16.52 19.39
Max 107.42 112.73 109.76 112.04 111.21 89.68 107.42 125.82

99%-quantile 97.72 97.99 99.53 99.41 99.47 84.28 105.02 116.58
95%-quantile 90.33 90.72 92.37 92.17 92.25 81.94 102.50 114.75
90%-quantile 86.47 87.00 88.38 88.20 89.19 80.90 98.70 113.48
75%-quantile 78.75 79.74 80.90 81.19 84.12 80.13 87.91 111.70
50%-quantile 78.68 78.39 78.68 79.03 78.74 80.13 78.68 77.26
25%-quantile 78.55 76.96 77.50 77.39 73.03 79.74 74.87 52.36
10%-quantile 70.98 71.49 73.04 72.90 67.66 77.84 56.86 43.79
5%-quantile 66.93 67.51 69.15 68.90 64.44 76.42 45.34 39.30
1%-quantile 60.02 60.53 61.98 61.70 57.45 73.47 33.74 32.16
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the strategy involves trading a CDS contract issued in the past, i.e. an instrument
that is not very liquid in practice. Finally, we also consider two cross-hedging
strategies. The first of them involves a junior bond of a comparable firm, i.e.
an instrument with the same default intensity but a distinct default time. The
second cross- hedging strategy, involves a position in a credit index of the type
investigated in Brigo and Morini (2011), i.e. a pool of credit names with the same
credit quality (the same default rate) as the instrument we wish to hedge. Taking
a long position in such a credit index, the investor makes periodical protection
payments and receives a payment at any time one of the credit names in the index
defaults. In our simulations, we chose a credit index with n = 5 credit names.
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Figure 7: Discounted cumulative hedging costs of LRM-strategy with defaultable

zero bond.

(a) Deterministic interest rate and deterministic default rate.
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(b) Stochastic interest rate and deterministic default rate.
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(c) Deterministic interest rate and stochastic default rate.
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(d) Stochastic interest rate and stochastic default rate.
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Figure 8: Discounted cumulative hedging costs for alternative hedging instruments.

(a) Junior bond of a comparable firm.
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(b) Credit Index.
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6 Conclusion

There is overwhelming empirical evidence that recovery payments in case of default
do not only depend on time of default and the term structure but also on additional
sources of risk. Based on the concept of single-stochastic and doubly-stochastic
recovery payments introduced in this paper, we derive hedging strategies which are
locally risk minimizing (LRM). We denote the recovery rate as single-stochastic if
the recovery amount depends only on the default event and the interest rate. We
denote the recovery rate as doubly-stochastic if the recovery amount also depends
on the realization of another random variable. Corresponding model variants are
examined for the reduced-form model framework.

It turns out that the corresponding LRM-strategy is not only mean-self-financing
but also self-financing if the default recovery is single-stochastic. That is, as long as
the recovery amount is known in the event of default, there exists a self-financing
replication strategy for credit derivatives. Moreover, we find that in the more re-
alistic case of doubly-stochastic default recoveries, the LRM-hedging strategy does
only depend on the expected recovery amount, not on other characteristics of its
distribution. This key result of the paper helps to justify the simplifying assump-
tion frequently made when valuing and hedging credit derivatives, that the default
recovery is constant, conditional on the default event.

The key result also holds when replacing the zero coupon with total loss in case of
default by another hedging instrument. For instance, under the assumption that
the stock price jumps to/or reaches a pre-specified value when the credit event
occurs, one may also use common stocks. Moreover, and in contrast to the existing
literature, we provide explicit representations for the hedge ratio even when all
relevant quantities are stochastic. In our simulations, it turns out that it is crucial
to model the default intensity as a stochastic process (in addition to a doubly-
stochastic recovery payment).

Our key insight still remains valid when replacing the LRM-concept by another
hedging concept which is based on a quadratic criterion. Moreover, it can be shown
that the key message also holds when dealing with structural models.
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A Appendix

Problem 2 (LRM-Hedge in continuous time)

A trading strategy H with VT (H) = FT P -a.s. is called locally risk-minimizing,

(LRM) for short, if it satisfies

lim inf
N→∞

rTN (H,∆) ≥ 0 PM -a.s.11

for every null-convergent sequence of partitions TN = {t0 = 0,t1, . . . ,tN = T} of

[0,T ], i.e. TN ⊂ TN+1 and limN→∞maxi=1,...,N(t
N
i − tNi−1) = 0, and every disturbance

∆. Here a disturbance ∆ = (δ,ε) is a trading strategy, such that δT = εT = 0

and
∫ T

0
|δs| d|A|s is bounded. Furthermore, defining the remaining risk Rt(H) mea-

sured as the expected quadratic increase of the discounted hedging costs, Rt(H) =

EP
[
(CT (H)− Ct(H))2 |Gt

]
, the expression

rT (H,∆) =
n−1∑

i=0

Rti(H+∆|(ti,ti+1])−Rti(H)

EP [〈M〉ti+1
− 〈M〉ti |Gti ]

11(ti,ti+1]

denotes the risk quotient for a trading strategy H, a disturbance ∆ = (δ,ε) and the

partition T = {t0 = 0,t1, . . . ,tn = T}.

Hence, a trading strategy is locally risk-minimizing if a disturbance of the strategy
will increase the risk measured by the risk quotient.

Proof of Lemma 1.

In proving this result,Theorem 2.4 from Schweizer (1991) applies directly, provided
that the regularity conditions X(1) - X(5) are satisfied. From these five condi-
tions12,13 only X(2) is not satisfied since 〈M〉t = 0 for t > τ . Nonetheless, we can
apply the results from Schweizer (1991) since for t > τ the financial market is not
subject to any risk. In addition, St = 0 for t > τ .

11PM = P×〈M,M〉 denotes the Doléans Dade measure of 〈M,M〉 on the product space Ω×[0,T ]

with the predictable σ-algebra.
12X(4) is satisfied if the default intensities fulfill the requirement EM [|α̃| log+(|α̃|)] < ∞. Here

EM [·] denotes the expectation under the Doléans-Dade measure PM = P × 〈M,M〉. If the de-

fault intensities fulfill for example the condition inft∈[0,T ] |λ̂(t)− λ(t)|/|λ(t)| > 0, the requirement

EM [|α̃| log+(|α̃|)] < ∞ holds.
13X(5) is satisfied since P (τ = T ) = 0 and ST is P -a.s. continuous at T .
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The following proof consists of two steps. In the first step we derive the locally
risk-minimizing hedge ratio hS

t , and in the second step we verify that LF is a
square-integrable martingale which is orthogonal to M . We have

V F
t

Bt

= Ê

[
FT

BT

∣∣∣∣Gt

]

= Ê

[(∫ T

0

1

Bs

dCs +
F

BT

)
11{τ>T} +

(∫ τ

0

1

Bs

dCs +
Z(τ)

Bτ

)
11{τ≤T}

∣∣∣∣Gt

]

= 11{τ≤t}

(∫ τ

0

1

Bs

dCs +
Z(τ)

Bτ

)
+ 11{τ>t}

∫ t

0

1

Bs

dCs

+11{τ>t}Ê

[∫ T∧τ

t

1

Bs

dCs + 11{τ>T}
F

BT

+ 11{τ≤T}
Z(τ)

Bτ

∣∣∣∣Gt

]

= HZ
t + 11{τ>t}

∫ t

0

1

Bs

dCs

+11{τ>t}

∫ T

t

1

Bu

exp

{
−
∫ u

t

λ̂(s) ds

}
dCu

+11{τ>t}
1

BT

exp

{
−
∫ T

t

λ̂(s) ds

}
· F

+11{τ>t}

∫ T

t

1

Bu

exp

{
−
∫ u

t

λ̂(s)ds

}
λ̂(u) µZ(u) du

=
HZ

t

Bt

+ (1−Ht)

(∫ t

0

1

Bs

dCs +
gCt + gFt + gZt

Bt

)
(A1)

where

HZ
t = 11{τ≤t}

(∫ τ

0

Bt

Bs

dCs +
Bt

Bτ

Z(τ)

)
. (A2)

Thus
〈
V F

B
,
S

B

〉

t

=

〈
HZ

B
,
S

B

〉

t

+

〈
(1−H)

∫ ·

0

1

Bs

ds,
S

B

〉

t

(A3)

+

〈
(1−H)

gC

B
,
S

B

〉

t

+

〈
(1−H)

gF

B
,
S

B

〉

t

+

〈
(1−H)

gZ

B
,
S

B

〉

t

.

For the first term on the right-hand side of (A3),
[
HZ

B
,
S

B

]

t

=
HZ

t

Bt

St−

Bt

−
∫ t

0

HZ
s−

Bs

d

(
St

Bt

)
−
∫ t

0

St−

Bt

d

(
HZ

s

Bs

)

= 0− 0− 11{τ≤t}
Sτ−

Bτ

· ∆HZ
τ

Bτ

= −11{τ≤t}
Sτ−

Bτ

· H
Z
τ

Bτ
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implies

d

〈
HZ

B
,
S

B

〉

t

= Ê

[
d

[
HZ

B
,
S

B

]

t

∣∣∣∣Gt−

]

= −λ̂(t)
St−

Bt−

(∫ t

0

1

Bs

dCs +
µZ(t)

Bt

)
dt

=
−
∫ t

0
Bt

Bs
dCs − µZ(t)

St−

d

〈
S

B
,
S

B

〉

t

.

Similarly, for the second term we get

d

〈
(1−H)

∫ ·

0

1

Bs

dCs,
S

B

〉

t

= −d

〈
H

∫ ·

0

1

Bs

dCs,
S

B

〉

t

=

∫ t

0
Bt

Bs
dCs

St−
d

〈
S

B
,
S

B

〉

t

,

while for the remaining terms, we have

d

〈
(1−H)

gC

B
,
S

B

〉

t

=
gCt
St−

d

〈
S

B
,
S

B

〉

t

,

d

〈
(1−H)

gF

B
,
S

B

〉

t

=
gFt
St−

d

〈
S

B
,
S

B

〉

t

,

d

〈
(1−H)

gZ

B
,
S

B

〉

t

=
gZt
St−

d

〈
S

B
,
S

B

〉

t

,

respectively. Altogether, by (A3),

d

〈
V F

B
,
S

B

〉

t

=

(
−µZ(t)

St−
+

gCt
St−

+
gFt
St−

+
gZt
St−

)
d

〈
S

B
,
S

B

〉

t

,

so the locally risk-minimizing hedge ratio is given by

hS
t = −µZ(t)

St−
+

gCt
St−

+
gFt
St−

+
gZt
St−

Since H0 = 0 and HZ
0 = 0,

F0 = V F
0 = Ê

[
FT

BT

∣∣∣∣G0

]
= gC0 + gF0 + gZ0 , (A4)

by equation (A1).
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In the following we verify that LF/B is a square-integrable martingale with LF
0 = 0

which is P -orthogonal to M .

Since L0 = 0, supt∈[0,T ] σ
Z(t) < ∞ by assumption and

E[Ls/Bs|Gt]

= E

[
11{τ≤s}

1

Bτ

(
Zτ − µZ(τ)

) ∣∣∣∣Gt

]

= E

[(
11{τ≤t} + 11{t<τ≤s}

) 1

Bτ

(
Zτ − µZ(τ)

) ∣∣∣∣Gt

]

= 11{τ<t}
1

Bτ

(
Zτ − µZ(τ)

)

+

∫ s

t

1

Bτ

exp

{
−
∫ u

t

λ̂(v)dv

}
λ̂(u)

(
µZ(u)− µZ(u)

)
du

= 11{τ≤t}
1

Bτ

(
Zτ − µZ(τ)

)
+ 0

= Lt/Bt,

for s ≥ t, L/B is a (G)-martingale.

L is stronly P -orthogonal to M since

E[Ls/Bs ·Ms|Gt]

= E

[(
11{τ≤t} + 11{t<τ≤s}

) 1

Bτ

(
Zτ − µZ(τ)

)
Ms

∣∣∣∣Gt

]

= Lt · E[Ms|Ft]

+

∫ s

t

1

Bu

(
µZ(u)− µZ(u)

)
exp

{
−
∫ u

t

λ̂(v)dv

}
λ̂(u) E[Ms|Gt] du

= Lt/Bt ·Mt

for any s ≥ t.

Proof of Lemma 2. From equation (23) in Bielecki, Jeanblanc and Rutkowski
(2008), it follows that the discounted cumulative value of the senior bond (Z,C, F )

follows the dynamics

dV F
t

Bt

= (1−Ht)G
−1
t dmt +

Z(t)− (gCt + gFt + gZt )

Bt

dH̃t,
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hence

FT

BT

= F0 +

∫ T

0

(1−Ht)G
−1
t dmt

+

∫ T

0

(
Z(t)− gCt + gFt + gZt

Bt

)
dH̃t

= F0 +

∫ T

0

(1−Ht) G
−1
t

ξmt
ξSt

dmS
t +

∫ T

0

Z(t)− µZ(t)

Bt

dH̃t

+

∫ T

0

(
µZ(t)− gCt + gFt + gZt

Bt

)
dH̃t

= F0 +

∫ T

0

[
(1−Ht) G

−1
t

ξmt
ξSt

+
gCt + gFt + gZt

St−

− µZ(t)

St−

]
d

(
St

Bt

)
+

∫ T

0

Z(t)− µZ(t)

Bt

dH̃t,

is the FS-decomposition of the senior bond in case of a non-trivial reference filtration
(Ft). In particular, the locally risk-minimizing hedge ratio is given by

hS
t = (1−Ht) G

−1
t

ξmt
ξSt

+
gCt + gFt + gZt

St−

− µZ(t)

St−

.

Proof of Lemma 3.

FT

BT
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The crucial step in deriving hedge ratios in continuous-time models usually is to
calculate the predictable process appearing in the martingale representation of some
payoff. In our setting, we are interested in the process m with martingale repre-
sentation 14. Bruti-Liberati and Platen (2010, p. 591ff.) considered the problem of
finding explicit integral representations of general derivatives’ payoff structures. For
the reader’s convenience, we state these results, which are basically due to Heath
(1995), in the two propositions below.

We first consider a market driven by a single state variable, a stochastic process Y

with dynamics14

dYt = α(t,Yt) dt+ σ(t,Yt) dWt.

Consider a European contingent claim Z whose payoff at maturity T depends on
the evolution of the state variable, i.e.

Z = Z(Y T ),

where Y t = {Ys : s ≤ t} for all t. In particular, we have Ft = σ(Ws : s ≤ t) = σ(Y t)

and, for an (Ft)-martingale m, the martingale representation writes

mt = m0 +

∫ t

0

ξms dWs. (A5)

We then have the following result which follows from Bruti-Liberati and Platen
(2010, p. 597).

Proposition A.1 (Explicit Hedge Ratio)

Define the martingale m by mt = E[Z|Ft] for all t. Suppose there exists a deter-

ministic function u : [0,T ]× R → R of class15 C1,3 such that

u(t,y) = E[Z|Ft]

for any t and y. Then, the process ξm in (A5) is given by

ξms = σ(s,Ys) ·
∂

∂y
u(s,Ys).

14In our applications, this corresponds to the case of either the interest rate or the default rate

being stochastic. In this case, we have Yt = rt respectively Yt = λ̂t for all t.
15A function u : [0,T ]× R → R,(t,y) 7→ u(t,y) is of class C1,3, if u is continuously differentiable

with respect to t and three times continuously differentiable with respect to y.
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We now consider a market driven by two state variables, i.e. a two-dimensional
stochastic process Y = (Y 1,Y 2) with dynamics16

dY i
t = αi(t,Yt) dt+

2∑

j=1

σi,j(t,Yt) dW
i
t . (A6)

for i = 1,2. Consider a European contingent claim Z whose payoff at maturity T

depends on the evolution of the two state variables, i.e.

Z = Z(Y
1

T ,Y
2

T ),

where Y
i

t = {Y i
s : s ≤ t} for all t, i = 1,2. In this case, the martingale representation

writes

mt = m0 +

∫ t

0

ξm,1
s dW 1

s +

∫ t

0

ξm,2
s dW 2

s . (A7)

We now state the explicit formula for the processes ξm,i
s , i = 1,2, in case the state

variable Y i only depends on W i, i = 1,2. In particular, we then have

σi,j = δi,j · σi,i (A8)

in (A6), where δ denotes the Kronecker delta. The following result is a direct
consequence from Bruti-Liberati and Platen (2010, p. 605).

Proposition A.2 (Explicit Hedge Ratio, Case of a Two-Dimensional BM)

Define the martingale m by mt = E[Z|Ft] for all t. Suppose there exists a deter-

ministic function u : [0,T ]× R2 → R of class C1,3 such that

u(t,y1,y2) = E[Z|Ft]

for any t and y. Then, the processes ξm,i, i = 1,2, in (A7) are given by

ξm,1
s = σ1,1(s,Ys) ·

∂

∂y1
u(s,Ys),

ξm,2
s = σ2,2(s,Ys) ·

∂

∂y2
u(s,Ys).

16In our applications, this corresponds to the case of both the interest rate and the default rate

being stochastic. In this case, we have Y 1
t = rt and Y 2

t = λ̂t for all t.
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